kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neuromuscular adaptations in ankle plantar flexor and dorsiflexor in persons with spinal cord injury
KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0001-9652-4594
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, BioMEx.ORCID iD: 0000-0001-5417-5939
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Objective: Spinal cord injury (SCI) could lead to sensory-motor impairment of varying degree. After the injury, multiple neurophysiological changes occur, altering the neural motor control strategies. This study aims to assess the neuromuscular adaptations in the ankle plantar flexor and dorsiflexor muscles after the SCI by examining the electromyography (EMG) and motor unit parameters during sub-maximal voluntary isometric contractions and comparing these parameters to a control cohort. Methods: High-density EMG (HD-EMG) signals of tibialis anterior and soleus were recorded simultaneously with ankle joint torque during repeated sub-maximal (20% and 50% of the maximal torque) isometric voluntary contractions. Torque parameters such as normalized torque and coefficient of variation of torque during sustained contraction, EMG parameters such as amplitude and intramuscular coherence, as well as motor unit parameters such as motor unit discharge rates, recruitment thresholds, and coefficient of variation of the inter-spike intervals, were analyzed within the SCI and control groups. Results: We found that the SCI group, on average, had significantly weaker plantar flexor but not dorsiflexor muscles than the control group. Despite the increased variation of soleus motor unit inter-spike intervals post-SCI, both groups maintained constant sub-maximal torques with similar variability. However, the SCI group required up to 40.2% higher normalized EMG amplitudes to achieve the same torque level as the control group. Additionally, intramuscular coherence was found to be lower (up to 38.1% in TA and 34.6% in SOL) in the SCI group compared to the control group in the alpha frequency band during sustained sub-maximal isometric contractions. At higher force levels (50% MVC), motor units were recruited and de-recruited at lower thresholds in both muscles and fired at lower rates in the tibialis anterior muscle post-SCI. Conclusion: Through the analysis of these parameters, we observed altered force production and modulation strategies post-SCI. The observed combination of the motor unit and EMG parameter changes may indicate reduced common neural drive within the muscle and a possible shift towards larger motor units and in both TA and SOL muscles. Significance: The results of this study contribute to the knowledge of the neurophysiological modifications in the ankle dorsiflexors and plantar flexors following the SCI, which may aid future research on SCI rehabilitation.

Keywords [en]
neurophysiology, neuromuscular control, spinal cord injury
National Category
Neurology Other Medical Engineering
Research subject
Medical Technology
Identifiers
URN: urn:nbn:se:kth:diva-323688OAI: oai:DiVA.org:kth-323688DiVA, id: diva2:1735714
Note

QC 20230210

Available from: 2023-02-09 Created: 2023-02-09 Last updated: 2023-02-10Bibliographically approved
In thesis
1. High-Density Electromyography-Based Methods for Joint Torque Prediction and Motor Unit Behavior Observation
Open this publication in new window or tab >>High-Density Electromyography-Based Methods for Joint Torque Prediction and Motor Unit Behavior Observation
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Alternative title[sv]
Metoder baserade på högdensitetselektromyografi för förutsägelse av ledmoment och observation av motoriska enhetersbeteende
Abstract [en]

Electromyography (EMG) is a technique that measures the electrical activity of muscles. It reflects muscle activation and provides an interface to the central nervous system at the level of the muscle or individual motor units, which helps us understand the mechanisms of muscle force production, control, and coordination. EMG can also be used to detect changes in muscle activity caused by pathology, making it a valuable tool for research, diagnosis, and rehabilitation. One of the latest advancements in EMG technology is high-density EMG (HD-EMG). HD-EMG measures multiple spatially separated samples of muscle activation. This additional spatial information in HD-EMG offers new possibilities for the prediction of joint torques and the ability to look into individual motor units by decomposing the signals using blind source separation methods. This thesis presents two studies that explore the use of HD-EMG methods for joint torque estimation and the observation of motor unit behavior. 

In the first paper, we presented a detailed investigation of the effects of different EMG and kinematic inputs on the accuracy and robustness of ankle joint torque prediction using support vector regression. To evaluate the robustness, we analyzed the results in three cases (intra-session, inter-subject, and inter-session) and two movement categories (isometric contraction and dynamic movement). We found that HD-EMG-derived inputs improve the accuracy and robustness of torque prediction of the isometric contractions. However, in dynamic movements, good prediction results could only be achieved by including additional kinematic features (ankle joint position and angular velocity), and the type of EMG input did not strongly influence the results.

In the second paper, we investigated the changes in motor unit behavior of the ankle plantar flexor (soleus) and dorsiflexor (tibialis anterior) caused by spinal cord injury (SCI). We computed torque, EMG, and motor unit parameters during volitional sub-maximal voluntary contractions for the SCI group and compared them to a non-injured control cohort. We found that participants in both groups could maintain the prescribed torque with similar variability. However, the SCI group required higher muscle activation levels (normalized to maximum) to achieve the same level of relative torque compared to the control group. The SCI group had lower intramuscular coherence in the alpha frequency band than the control group, indicating altered neural synchronization at the sub-cortical level. The soleus motor unit firing patterns were more variable post-SCI than in the control group. In addition, at high torque levels (50% of personal maximum), both muscle's motor units were recruited and de-recruited at lower torques, and motor units fired at lower rates in the tibialis anterior muscle in persons with SCI, indicating altered force gradation strategies after the injury.

The studies presented in this thesis demonstrated that HD-EMG is suitable for robust isometric ankle joint torque prediction, which has potential in applications such as robot-assisted rehabilitation and robotic gait assistive technology. In particular, the robustness and accuracy of HD-EMG-based predictions are essential for improved estimation of the joint torque that can then be used in the human-in-the-loop control scheme. In addition, HD-EMG decomposition enables a non-invasive way to observe the motor unit behavior in vivo in persons with neuromusculoskeletal disorders, which can enhance the understanding of the underlying neurophysiological mechanisms of motor impairments. The insights provided by such HD-EMG analysis in the future may be beneficial for developing targeted interventions and personalized therapies.

Abstract [sv]

Elektromyografi (EMG) är en teknik som mäter den elektriska aktiviteten i musklerna. Den återspeglar muskelaktivering och utgör ett gränssnitt mot det centrala nervsystemet på muskelnivå eller enskilda motoriska enheter, vilket hjälper oss att förstå mekanismerna för muskelkraftproduktion, kontroll och samordning. EMG kan också användas för att upptäcka förändringar i muskelaktiviteten som orsakas av patologi, vilket gör det till ett värdefullt verktyg för forskning, diagnos och rehabilitering. Ett av de senaste framstegen inom EMG-tekniken är EMG med hög densitet (HD-EMG). HD-EMG mäter flera spatialt separerade prover av muskelaktivering. Denna ytterligare rumsliga information i HD-EMG ger nya möjligheter att förutsäga ledmoment och förmågan att undersöka enskilda motoriska enheter genom att dekomponera signalerna med hjälp av metoder för blind källseparation. I denna avhandling presenteras två studier som utforskar användningen av HD-EMG-metoder för uppskattning av ledmoment och observation av motoriska enheters beteende.

I den första artikeln presenterade vi en detaljerad undersökning av effekterna av olika EMG- och kinematiska indata på noggrannheten och robustheten i förutsägelsen av fotledens vridmoment med hjälp av stödvektorregression. För att utvärdera robustheten analyserade vi resultaten i tre fall (inom sessionen, mellan försökspersoner och mellan sessioner) och två rörelsekategorier (isometrisk kontraktion och dynamisk rörelse). Vi fann att HD-EMG-deriverade indata förbättrar noggrannheten och robustheten av vridmomentprediktionen för isometriska kontraktioner. I dynamiska rörelser kunde dock goda prediktionsresultat endast uppnås genom att inkludera ytterligare kinematiska egenskaper (fotledens position och vinkelhastighet), och typen av EMG-inmatning påverkade inte resultaten i hög grad.

I den andra artikeln undersökte vi förändringarna i motoriska enheters beteende hos fotledens plantarflexor (soleus) och dorsalflexor (tibialis anterior) orsakade av ryggmärgsskada (SCI). Vi beräknade vridmoment, EMG och motoriska enhetsparametrar under frivilliga submaximala kontraktioner för ryggmärgsskadegruppen och jämförde dem med en oskadad kontrollkohort. Vi fann att deltagarna i båda grupperna kunde upprätthålla det föreskrivna konstanta vridmomentet med liknande variabilitet. SCI-gruppen krävde dock högre muskelaktiveringsnivåer (normaliserat till maximalt) för att uppnå samma nivå av relativt vridmoment jämfört med kontrollgruppen. SCI-gruppen hade lägre intramuskulär koherens i alfafrekvensbandet än kontrollgruppen, vilket tyder på förändrad neuralsynkronisering på subkortikal nivå. Soleus motoriska enheters avfyrningsmönster  var mer varierande efter SCI än i kontrollgruppen. Vid höga vridmomentnivåer (50% av personligt maximum) rekryterades dessutom båda musklernas motorenheter och de-rekryterades vid lägre vridmoment, och motorenheter avfyrade i lägre takt i tibialis anterior-muskeln hos personer med SCI, vilket tyder på förändrade kraftgraderingsstrategier efter skadan.

De studier som presenteras i den här avhandlingen visade att HD-EMG är lämpligt för att förutsäga ett robust isometriskt vridmoment för fotled, vilket har potential i tillämpningar som robotassisterad rehabilitering och robotbaserad teknik för gånghjälp. I synnerhet är robustheten och noggrannheten hos HD-EMG-baserade förutsägelser viktiga för en förbättrad uppskattning av ledmomentet som sedan kan användas i styrsystemet "human-in-the-loop". Dessutom möjliggör HD-EMG-dekomponering ett icke-invasivt sätt att observera de motoriska enheternas beteende in vivo hos personer med neuromuskuloskeletala störningar, vilket kan öka förståelsen för de underliggande neurofysiologiska mekanismerna för motoriska funktionsnedsättningar. De insikter som en sådan HD-EMG-analys ger i framtiden kan vara till nytta för att utveckla riktade interventioner och individualiserade behandlingar.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 90
Series
TRITA-SCI-FOU ; 2023:06
Keywords
Ankle, isometric contractions, machine learning, neuromuscular control, spinal cord injury, Fotled, isometriska kontraktioner, maskininlärning, neuromuskulär kontroll, ryggmärgsskada
National Category
Mechanical Engineering
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-323693 (URN)978-91-8040-493-8 (ISBN)
Presentation
2023-03-07, E32, Lindstedtsvägen 3, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 230210

Available from: 2023-02-10 Created: 2023-02-09 Last updated: 2023-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Gutierrez-Farewik, ElenaWang, Ruoli

Search in DiVA

By author/editor
Kizyte, AstaGutierrez-Farewik, ElenaWang, Ruoli
By organisation
Engineering MechanicsBioMEx
NeurologyOther Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 321 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf