The adoption of innovation in the building sector is currently too slow for the ambitious sustainability goals thatour societies have agreed upon. Living labs are open innovation ecosystems in real-life environments usingiterative feedback processes throughout a lifecycle approach of an innovation to create sustainable impact. In thecontext of the built environment, such co-creative innovation and demonstration platforms are needed tofacilitate the adoption of innovative technologies and concepts for more energy-efficient and sustainablebuildings. However, their feasibility is not extensively proven. This paper illustrates the implementation anddemonstrates the feasibility of the Living Labs Triangle Framework for buildings living labs. This conceptualframework has been used to conceive the KTH Live-In Lab, a living lab for buildings. The goal of the Live-In Labwas to create a co-creative open platform for research and education bridging the gap between industry andacademia, featuring smart building demonstrators. The Living Lab Triangle Framework has been deployed tomeet the goals of the Live-in Lab, and the resulting concept is described. This paper then analyses the meth-odological and operational results introducing performance metrics to measure the economic sustainability, thepromotion of multidisciplinary research and development projects, dissemination and impact. The results arecompleted with a SWOT analysis identifying its current strengths and weaknesses. The results collected in thiswork fill a missing gap in the scientific literature on the performance of living labs and provide empirical evi-dence on the sustainability and impact of living labs.
QC 20230321