kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Back to the Manifold: Recovering from Out-of-Distribution States
KTH, School of Electrical Engineering and Computer Science (EECS).ORCID iD: 0000-0001-8938-9363
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-3599-440x
Stanford Univ, Stanford, CA 94305 USA..
Show others and affiliations
2022 (English)In: 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 8660-8666Conference paper, Published paper (Refereed)
Abstract [en]

Learning from previously collected datasets of expert data offers the promise of acquiring robotic policies without unsafe and costly online explorations. However, a major challenge is a distributional shift between the states in the training dataset and the ones visited by the learned policy at the test time. While prior works mainly studied the distribution shift caused by the policy during the offline training, the problem of recovering from out-of-distribution states at the deployment time is not very well studied yet. We alleviate the distributional shift at the deployment time by introducing a recovery policy that brings the agent back to the training manifold whenever it steps out of the in-distribution states, e.g., due to an external perturbation. The recovery policy relies on an approximation of the training data density and a learned equivariant mapping that maps visual observations into a latent space in which translations correspond to the robot actions. We demonstrate the effectiveness of the proposed method through several manipulation experiments on a real robotic platform. Our results show that the recovery policy enables the agent to complete tasks while the behavioral cloning alone fails because of the distributional shift problem.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. p. 8660-8666
Series
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-324860DOI: 10.1109/IROS47612.2022.9981315ISI: 000909405301050Scopus ID: 2-s2.0-85146319849OAI: oai:DiVA.org:kth-324860DiVA, id: diva2:1745112
Conference
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), OCT 23-27, 2022, Kyoto, JAPAN
Note

QC 20230322

Available from: 2023-03-22 Created: 2023-03-22 Last updated: 2024-03-04Bibliographically approved
In thesis
1. On Symmetries and Metrics in Geometric Inference
Open this publication in new window or tab >>On Symmetries and Metrics in Geometric Inference
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Spaces of data naturally carry intrinsic geometry. Statistics and machine learning can leverage on this rich structure in order to achieve efficiency and semantic generalization. Extracting geometry from data is therefore a fundamental challenge which by itself defines a statistical, computational and unsupervised learning problem. To this end, symmetries and metrics are two fundamental objects which are ubiquitous in continuous and discrete geometry. Both are suitable for data-driven approaches since symmetries arise as interactions and are thus collectable in practice while metrics can be induced locally from the ambient space. In this thesis, we address the question of extracting geometry from data by leveraging on symmetries and metrics. Additionally, we explore methods for statistical inference exploiting the extracted geometric structure. On the metric side, we focus on Voronoi tessellations and Delaunay triangulations, which are classical tools in computational geometry. Based on them, we propose novel non-parametric methods for machine learning and statistics, focusing on theoretical and computational aspects. These methods include an active version of the nearest neighbor regressor as well as two high-dimensional density estimators. All of them possess convergence guarantees due to the adaptiveness of Voronoi cells. On the symmetry side, we focus on representation learning in the context of data acted upon by a group. Specifically, we propose a method for learning equivariant representations which are guaranteed to be isomorphic to the data space, even in the presence of symmetries stabilizing data. We additionally explore applications of such representations in a robotics context, where symmetries correspond to actions performed by an agent. Lastly, we provide a theoretical analysis of invariant neural networks and show how the group-theoretical Fourier transform emerges in their weights. This addresses the problem of symmetry discovery in a self-supervised manner.  

Abstract [sv]

Datamängder innehar en naturlig inneboende geometri. Statistik och maskininlärning kan dra nytta av denna rika struktur för att uppnå effektivitet och semantisk generalisering. Att extrahera geometri ifrån data är därför en grundläggande utmaning som i sig definierar ett statistiskt, beräkningsmässigt och oövervakat inlärningsproblem. För detta ändamål är symmetrier och metriker två grundläggande objekt som är allestädes närvarande i kontinuerlig och diskret geometri. Båda är lämpliga för datadrivna tillvägagångssätt eftersom symmetrier uppstår som interaktioner och är därmed i praktiken samlingsbara medan metriker kan induceras lokalt ifrån det omgivande rummet. I denna avhandling adresserar vi frågan om att extrahera geometri ifrån data genom att utnyttja symmetrier och metriker. Dessutom utforskar vi metoder för statistisk inferens som utnyttjar den extraherade geometriska strukturen. På den metriska sidan fokuserar vi på Voronoi-tessellationer och Delaunay-trianguleringar, som är klassiska verktyg inom beräkningsgeometri. Baserat på dem föreslår vi nya icke-parametriska metoder för maskininlärning och statistik, med fokus på teoretiska och beräkningsmässiga aspekter. Dessa metoder inkluderar en aktiv version av närmaste grann-regressorn samt två högdimensionella täthetsskattare. Alla dessa besitter konvergensgarantier på grund av Voronoi-cellernas anpassningsbarhet. På symmetrisidan fokuserar vi på representationsinlärning i sammanhanget av data som påverkas av en grupp. Specifikt föreslår vi en metod för att lära sig ekvivarianta representationer som garanteras vara isomorfa till datarummet, även i närvaro av symmetrier som stabiliserar data. Vi utforskar även tillämpningar av sådana representationer i ett robotiksammanhang, där symmetrier motsvarar handlingar utförda av en agent. Slutligen tillhandahåller vi en teoretisk analys av invarianta neuronnät och visar hur den gruppteoretiska Fouriertransformen framträder i deras vikter. Detta adresserar problemet med att upptäcka symmetrier på ett självövervakat sätt.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 61
Series
TRITA-EECS-AVL ; 2024:26
Keywords
Machine Learning, Computational Geometry, Voronoi, Delaunay, Symmetry, Equivariance
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-344129 (URN)978-91-8040-864-6 (ISBN)
Public defence
2024-04-09, https://kth-se.zoom.us/j/61437033234?pwd=dnBpMnYyaDVWWC95RHNTakNXWkNRQT09, F3 (Flodis) Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20240304

Available from: 2024-03-04 Created: 2024-03-02 Last updated: 2024-03-08Bibliographically approved

Open Access in DiVA

fulltext(2202 kB)229 downloads
File information
File name FULLTEXT01.pdfFile size 2202 kBChecksum SHA-512
0bdb58da2bad6181005a307d81ecc8d00d8e3dd435e92a89d45deded7324abef310dbc2fc881b05675c876cb203490268a9ef097feaa813a9c75efe82074561e
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Reichlin, AlfredoMarchetti, Giovanni LucaYin, HangKragic, Danica

Search in DiVA

By author/editor
Reichlin, AlfredoMarchetti, Giovanni LucaYin, HangKragic, Danica
By organisation
School of Electrical Engineering and Computer Science (EECS)Robotics, Perception and Learning, RPL
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 229 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 191 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf