kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Not transparent and incomprehensible: A qualitative user study of an AI-empowered financial advisory system
KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Real Estate Business and Financial Systems.ORCID iD: 0000-0002-2903-9158
KTH, School of Electrical Engineering and Computer Science (EECS), Human Centered Technology, Media Technology and Interaction Design, MID.ORCID iD: 0000-0003-3743-100X
KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Real Estate Business and Financial Systems.ORCID iD: 0000-0003-4394-4020
2023 (English)In: Data and Information Management, E-ISSN 2543-9251, article id 100041Article in journal (Refereed) Published
Abstract [en]

AI-empowered and algorithm-driven automated financial advisory systems, also known as Robo-advisors, have been rapidly implemented by service providers and customers in financial service markets. Yet, few empirical studies investigate customers’ experience interacting with fully functional Robo-advisors in real-life scenarios. Also, it is still unknown how the design of the automated system can affect customers’ perception and adoption of this new technology. To mitigate these gaps, 24 participants with different levels of experience and understanding of financial investment were asked to use a Robo-advisor from a retail bank and perform the tasks. By conducting observations and retrospective post-test interviews, we find that participants do not fully perceive the social aspects supposed to be provided by Robo-advisors. The overarching problems are, among others, a lack of transparency and incomprehensible information. This results in distrust of the results generated by this system, which negatively affects customers’ adoption of the investment advice provided by the Robo-advisor. The potential of interactive data visualization is also detected. This work contributes to the understanding of customers regarding their perception and adoption based on their use of a functional Robo-advisor and proposes design takeaways for transparent and comprehensible automated advisory systems in financial service contexts.

Place, publisher, year, edition, pages
Elsevier, 2023. article id 100041
National Category
Information Systems, Social aspects
Identifiers
URN: urn:nbn:se:kth:diva-326508DOI: 10.1016/j.dim.2023.100041Scopus ID: 2-s2.0-85158916413OAI: oai:DiVA.org:kth-326508DiVA, id: diva2:1754541
Note

QC 20230504

Available from: 2023-05-03 Created: 2023-05-03 Last updated: 2025-03-14Bibliographically approved
In thesis
1. Understanding Customers in AI-empowered Financial Advisory Systems and Services: An interdisciplinary study of Robo-advisors
Open this publication in new window or tab >>Understanding Customers in AI-empowered Financial Advisory Systems and Services: An interdisciplinary study of Robo-advisors
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

AI-empowered financial advisory services, also known as robo-advisors, present both innovations and challenges as they replace human financial advisors, reshape customer service, and attract customers with different characteristics than their predecessors. Therefore, it is more important than ever for financial service providers to understand customers’ perception and experience of using robo-advisors on the service front line. However, our systematic literature review indicates that research on robo-advisors is scattered across different disciplines with a narrow focus on sharing knowledge across fields. Moreover, empirical studies on robo-advisors have primarily focused on customer acceptance and intentional behaviors, often based on data collected through surveys. Also, these studies have paid less attention to the role of robo-advisor design and the context in which customers interact with fully functional robo-advisors in real-life situations. To address these gaps, this thesis aims to synthesize interdisciplinary knowledge and identify gaps in the research on robo-advisors. It also aims to explore customers’ experience of using and interacting with robo-advisors and how the experience affects their perception and adoption of the service. By conducting a systematic literature review and a qualitative user study, this thesis finds that customers’ perceptions of robo-advisors often do not meet their expectations. Nontransparency and incomprehensible information about the system’s decision-making are significant barriers to customers’ adoption of robo-advisors. This thesis contributes to a deeper understanding of customers in AI-empowered financial advisory services by using theories and approaches across different disciplines. It also provides practical implications for practitioners in the robo-advisory service industry.

Abstract [sv]

AI-förstärkta finansiella robotrådgivare innebär både innovationer och utmaningar eftersom de ersätter mänskliga finansiella rådgivare, omformar kundservice och lockar till sig andra typer av kunder än deras föregångare. Därför är det viktigare än någonsin för tjänsteleverantörer i det finansiella systemet att förstå kunders erfarenheter och upplevelser av robotrådgivning i servicefronten. Dock indikerar avhandlingens systematiska litteraturgenomgång att tidigare forskning om robotrådgivare är spridd över olika discipliner med begränsat fokus på att dela kunskap mellan disciplinerna. Dessutom har de empiriska studierna rörande robotrådgivare primärt fokuserat på kundacceptans och intentionsbeteenden – ofta baserat på data insamlad via enkäter. Tidigare studier har också ägnat mindre uppmärksamhet åt robotrådgivares design och den kontext där kunder interagerar med robotrådgivare i verkliga situationer. Baserat på dessa brister i tidigare studier syntetiserar avhandlingen tvärvetenskaplig kunskap och identifierar luckor i forskning om robotrådgivare. Avhandlingen utforskar också kunders erfarenhet av att använda och interagera med robotrådgivare och hur dessa erfarenheter påverkar deras upplevelser av och användande av tjänsten. Genom en systematisk litteraturgenomgång och en kvalitativ intervjubaserad användarstudie visar avhandlingens studier att kunders upplevelse av robotrådgivare inte motsvarar deras förväntningar. Bristande transparens och svårbegriplig information om systemets beslutsfattande är betydande hinder för kundernas antagande av sådana tjänster när de interagerar med robotrådgivare. Avhandlingen bidrar till en djupare förståelse för kundupplevelser av AI-förstärkta finansiella robotrådgive genom att integrera teori och metod från olika discipliner. Det ger också praktiska implikationer för finanssektorns företag med verksamhet inom robotrådgivning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 34
Series
TRITA-ABE-DLT ; 2323
National Category
Business Administration Information Systems, Social aspects
Research subject
Business Studies
Identifiers
urn:nbn:se:kth:diva-326612 (URN)978-91-8040-572-0 (ISBN)
Presentation
2023-05-30, E2, plan 3, Lindstedtsvägen 3,KTH Campus, videolänk https://kth-se.zoom.us/s/67517483614, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20230508

Available from: 2023-05-08 Created: 2023-05-05 Last updated: 2023-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Zhu, HuiSallnäs Pysander, Eva-LottaSöderberg, Inga-Lill

Search in DiVA

By author/editor
Zhu, HuiSallnäs Pysander, Eva-LottaSöderberg, Inga-Lill
By organisation
Real Estate Business and Financial SystemsMedia Technology and Interaction Design, MID
In the same journal
Data and Information Management
Information Systems, Social aspects

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 321 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf