kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Protected Lignin Biorefining: Fundamental Insights on Lignin Reactivity
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.ORCID iD: 0000-0002-1258-8361
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The potential to utilize lignin, which constitutes as much as 15-30% of the biomass, needs further evaluation. In the transition towards a bioeconomy, lignin has the potential to replace fossil-based phenols. Attempts to valorize the available technical lignins are ongoing; however, that lignin suffers from molecular heterogeneity. Accordingly, new process concepts, coined in the term lignin biorefineries, are required to obtain less heterogenic lignin with different properties and preserved molecular structure.

In this study, a new lignin extraction concept was investigated, where the structural properties of lignin were preserved to a high degree using a physical protection strategy. The principle of preserving the lignin structure was based on a cyclic organosolv extraction concept. At first, a two-step concept was evaluated, where a hydrothermal extraction was performed to recover hemicellulose, followed by a cyclic organosolv extraction to obtain the lignin. Trend studies were performed for the individual cycles to gain a deeper understanding of how the lignin structure was affected by the cycles. To further investigate the method, chemometrics and design of experiment were used to gain knowledge about how different properties of lignin were affected by the extraction conditions and how the properties of lignin could be tailored. Based on the knowledge from the chemometric study and the observations from the two-step method, a refined one-step method was developed to obtain lignin with further improved analytical quality, i.e., up to 95% of the interunit linkages could be assigned for spruce lignin by heteronuclearsingle quantum coherence (HSQC) nuclear magnetic resonance (NMR)spectroscopy, 13C NMR and size exclusion chromatography (SEC). The universality of the method was investigated for different wood species, such as spruce and birch. The results indicate the applicability of the concept using different raw materials.

The complex nature of lignin substrates conveys the need for robust analytic techniques. Herein, NMR studies were complemented by matrix-assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) to provide new insights into molecular lignin populations with respect to reactivity during the organosolv extraction.

Finally, a proof of concept for an application was investigated. The cyclic organosolv extracted lignin was used in a fundamental study on lignin nanoparticles (LNP), together with benchmark technical lignins, to gain knowledge about the role of the molecular structure in the LNP properties. It is suggested that the molecular structure of lignin plays an important role in determining the size and morphology of LNPs, opening possibilities to molecularly tailor LNP properties.

Abstract [sv]

Potentialen av att använda lignin, som utgör 15-30% av biomassan, behöver utvärderas ytterligare. I övergången till en bioekonomi finns potential för lignin att ersätta fossila fenoler. I denna kontext försöker man hitta ett värde för de tillgängliga tekniska ligninerna, men det finns utmaningar associerade med den molekylära strukturella heterogeniteten. Följaktligen behövs nya processkoncept, såsom lignin-bioraffinaderier, där man kan ta fram ett lignin med olika önskade egenskaper samt med en bevarad molekylstruktur.

I denna studie utvecklades ett nytt koncept för att extrahera lignin, där ligninets strukturella egenskaper kunde bevaras i hög grad med hjälp av en fysisk skyddsstrategi. Principerna för att bevara ligninstrukturen baserades på ett cykliskt organosolv-extraktions-koncept. Först utvärderades en två-stegs koncept, där en hydrotermisk extraktion, för att extrahera ut hemicellulosa, efterföljdes av en cyklisk organosolvextraktion för att extrahera ut lignin. Trendstudier utfördes för de individuella cyklerna för att få en fördjupad förståelse av hur ligninstrukturen påverkades av cyklerna. För att ytterligare undersöka metoden användes kemometri och experimentell design för att öka kunskapen om hur olika extraktionsförhållanden påverkade egenskaper hos ligninet samt hur egenskaperna hos ligninet kunde skräddarsys.Genom den erhållna kunskapen från den kemometriska studien och den studerade trenden av två-stegsmetoden, undersöktes en kortare en-stegsmetod för att kunna erhålla ett lignin med ytterligare förbättrad analytisk kvalité, där upp till 95% av bindningarna kunde bestämmas för granlignin, karaktäriserat med heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance spectroscopy (NMR), 13C NMR och size exclusion chromatography (SEC). Metodens universalitet undersöktes för träslag med olika lignin-egenskaper som gran och björk. Resultaten indikerade tillämpbarheten av konceptet för olika råvaror.

På grund av den komplexa naturen hos lignin finns ett behov av robusta analystekniker. För att möta detta kompletterades NMR-studier med matrix-assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analyser för att få nya insikter om olika molekylära ligninpopulationer samt för att öka kunskapen om ligninreaktiviteten under organosolv-extraktion.

Slutligen gjordes en undersökning av hur det cykliska ligninet förhöll sig mot en applikation. Det cykliska organosolv-extraherade ligninet användes i en fundamental studie om lignin-nano partiklar (LNP), tillsammans med benchmark-tekniska ligniner, för att öka insikter om de molekylära egenskapernas roll för LNP-egenskaperna. Det har visat sig att den molekylära strukturen spelar en betydande roll för att bestämma storleken och morfologin hos LNP, vilket öppnar upp för möjligheter att molekylärt skräddarsy LNP-egenskaper.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 63
Series
TRITA-CBH-FOU ; 2023:18
Keywords [en]
Sustainability, lignin, biorefinery, cyclic organosolv extraction, preserved structure, NMR, MALDI-TOF MS
Keywords [sv]
Hållbarhet, lignin, bioraffinaderi, cyklisk organosolv extraktion, bevarad struktur, NMR, MALDI-TOF MS
National Category
Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-326544ISBN: 978-91-8040-564-5 (print)OAI: oai:DiVA.org:kth-326544DiVA, id: diva2:1754762
Public defence
2023-06-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-05-09

Embargo godkänt av tf skolchef Amelie Eriksson Karlström via e-post 2023-05-09

Available from: 2023-05-09 Created: 2023-05-04 Last updated: 2023-08-04Bibliographically approved
List of papers
1. Toward a Consolidated Lignin Biorefinery: Preserving the Lignin Structure through Additive-Free Protection Strategies.
Open this publication in new window or tab >>Toward a Consolidated Lignin Biorefinery: Preserving the Lignin Structure through Additive-Free Protection Strategies.
2020 (English)In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 13, no 17, p. 4666-4677Article in journal (Refereed) Published
Abstract [en]

As part of the continuing efforts in lignin-first biorefinery concepts, this study concerns a consolidated green processing approach to obtain high yields of hemicelluloses and lignin with a close to native molecular structure, leaving a fiber fraction enriched in crystalline cellulose. This is done by subcritical water extraction of hemicelluloses followed by organosolv lignin extraction. This initial report focuses on a detailed characterization of the lignin component, with the aim of unravelling processing strategies for the preservation of the native linkages while still obtaining good yields and high purity. To this effect, a static cycle process is developed as a physical protection strategy for lignin, and advanced NMR analysis is applied to study structural changes in lignin. Chemical protection mechanisms in the cyclic method are also reported and contrasted with the mechanisms in a reference batch extraction process where the role of homolytic cleavage in subsequent repolymerization reactions is elucidated.

Place, publisher, year, edition, pages
Wiley, 2020
Keywords
NMR spectroscopy, biorefinery, green chemistry, lignin, static cycles
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-278022 (URN)10.1002/cssc.202000974 (DOI)000544043200001 ()32530110 (PubMedID)2-s2.0-85087168766 (Scopus ID)
Note

QC 20200720

Available from: 2020-07-02 Created: 2020-07-02 Last updated: 2024-03-15Bibliographically approved
2. Protected lignin biorefining through cyclic extraction: Gaining fundamental insights into the tuneable properties of lignin by chemometrics
Open this publication in new window or tab >>Protected lignin biorefining through cyclic extraction: Gaining fundamental insights into the tuneable properties of lignin by chemometrics
2022 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 24, no 3, p. 1211-1223Article in journal (Refereed) Published
Abstract [en]

Lignin is a renewable source of aromatics with great potential as a substitute for fossil-based phenolic compounds that are used in several material applications. However, the available technical lignins are heterogenic and still structurally not fully understood. This presents hurdles for studies focused on gaining fundamental insights into how materials properties are related to the molecular structure of lignin. In the present study, a novel cyclic extraction process for lignin is more deeply studied to investigate the potential to tailor the chemical and physical properties of lignin. For this purpose, a design of experiment (DoE) approach was adopted as a tool to investigate the effect on the lignin properties of the selected parameters by including linear, quadratic and interaction effects in a multiple linear regression (MLR) model. Molecular characterization techniques included 1D and 2D NMR, SEC and DSC. It was clearly demonstrated that the chemical and physical properties of lignin could be tuned for the cyclic process using the DoE approach, while preserving 66-82% of the commonly known lignin inter-units, substantiating that the cyclic extraction approach offered a decent to excellent level of protection to inter-units when compared to benchmark organosolv and kraft lignin. By manipulation of the extraction conditions, the β-O-4′ content can be tuned between 20 and 35% simultaneously with the content of phenolic and aliphatic hydroxyls. Finally, DSC studies showed Tgs in the range of 150-185 °C which are discussed with respect to the molecular properties of the analysed lignin. Overall, to advance efforts in lignin valorization, a green process to produce a library of well-characterized lignins, tailored with respect to chemical and physical properties by process conditions, is presented.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2022
Keywords
Design of experiments, Extraction, Linear regression, Materials properties, Nuclear magnetic resonance spectroscopy, Physical properties, Biorefining, Chemical and physical properties, Chemometrices, Extraction process, Linear quadratic, Material application, Phenolic compounds, Property, Quadratic effect, Renewable sources, Lignin, Chemicals, Processes, Produce, Protection, Techniques
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-320555 (URN)10.1039/d1gc04171a (DOI)000741065200001 ()2-s2.0-85124572247 (Scopus ID)
Note

QC 20221214

Correction in: Green Chemistry, Vol. 24, Issue 6, Page 2636-2637. DOI: 10.1039/d2gc90019j, WOS: 000764346400001, Scopus: 2-s2.0-85127142145

Available from: 2022-10-27 Created: 2022-10-27 Last updated: 2023-05-04Bibliographically approved
3. A Flexible Physical Protection Process for Lignin Extraction
Open this publication in new window or tab >>A Flexible Physical Protection Process for Lignin Extraction
(English)Manuscript (preprint) (Other academic)
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-326361 (URN)
Note

QCR 20230503

Available from: 2023-04-30 Created: 2023-04-30 Last updated: 2023-05-04Bibliographically approved
4. Lignin Structure and Reactivity in the Organosolv Process Studied by NMR Spectroscopy, Mass Spectrometry, and Density Functional Theory
Open this publication in new window or tab >>Lignin Structure and Reactivity in the Organosolv Process Studied by NMR Spectroscopy, Mass Spectrometry, and Density Functional Theory
Show others...
2023 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 24, no 5, p. 2314-2326Article in journal (Refereed) Published
Abstract [en]

There is need for well-defined lignin macromolecules for research related to their use in biomaterial and biochemical applications. Lignin biorefining efforts are therefore under investigation to meet these needs. The detailed knowledge of the molecular structure of the native lignin and of the biorefinery lignins is essential for understanding the extraction mechanisms as well as chemical properties of the molecules. The objective of this work was to study the reactivity of lignin during a cyclic organosolv extraction process adopting physical protection strategies. As references, synthetic lignins obtained by mimicking the chemistry of lignin polymerization were used. State-of-the-art nuclear magnetic resonance (NMR) analysis, a powerful tool for the elucidation of lignin inter-unit linkages and functionalities, is complemented with matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), to gain insights into linkage sequences and structural populations. The study unraveled interesting fundamental aspects on lignin polymerization processes, such as identifications of molecular populations with high degrees of structural homogeneity and the emergence of branching points in lignin structure. Furthermore, a previously proposed intramolecular condensation reaction is substantiated and new insights into the selectivity of this reaction are introduced and supported by density functional theory (DFT) calculations, where the important role of intramolecular π-π stacking is emphasized. The combined NMR and MALDI-TOF MS analytical approach, together with computational modeling, is important for deeper fundamental lignin studies and will be further exploited.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-326366 (URN)10.1021/acs.biomac.3c00186 (DOI)000979245100001 ()37078866 (PubMedID)2-s2.0-85154050716 (Scopus ID)
Note

QC 20230529

Available from: 2023-04-30 Created: 2023-04-30 Last updated: 2023-05-29Bibliographically approved
5. Molecular understanding of the morphology and properties of lignin nanoparticles: Unravelling the potential for tailored applications
Open this publication in new window or tab >>Molecular understanding of the morphology and properties of lignin nanoparticles: Unravelling the potential for tailored applications
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-326364 (URN)
Note

QC 20230503

Available from: 2023-04-30 Created: 2023-04-30 Last updated: 2023-05-04Bibliographically approved

Open Access in DiVA

fulltext(2444 kB)218 downloads
File information
File name FULLTEXT01.pdfFile size 2444 kBChecksum SHA-512
532e4d1ae4c26df6200a0f6eedf2cd87639e2e42d51d99bc4f01ef619574c716c53e9a0a29b717afe9b9fabfdaa29ac9cb4e272288a8af3636a8db1aaae85775
Type fulltextMimetype application/pdf

Authority records

Karlsson, Maria

Search in DiVA

By author/editor
Karlsson, Maria
By organisation
Wallenberg Wood Science CenterWood Chemistry and Pulp Technology
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 218 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1922 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf