kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Active Modal Control of an Innovative Two-Axle Vehicle with Composite Frame Running Gear
KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Väg- och spårfordon samt konceptuell fordonsdesign.ORCID iD: 0000-0003-4006-807x
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.ORCID iD: 0000-0002-3675-1354
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.ORCID iD: 0000-0002-3855-0011
KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.ORCID iD: 0000-0003-0198-6660
Show others and affiliations
2021 (English)In: IAVSD 2021: Advances in Dynamics of Vehicles on Roads and Tracks II, Springer Science and Business Media Deutschland GmbH , 2021, p. 8-17Conference paper, Published paper (Refereed)
Abstract [en]

Within the Shift2Rail projects Pivot2 and NEXTGEAR, an innovative Metro vehicle with single axle running gear and only one suspension step is proposed. A composite material running gear frame is developed to be used both as structural and as suspension element. The design with only one suspension step can significantly degrade the passengers ride comfort. Thus, active modal control is implemented both in lateral and vertical direction to increase the performance of the system. The running gear frame is modelled in Abaqus® as well as the carbody. Structural modes of both elements are implemented in SIMPACK®. A hydraulic actuator model is developed in Simscape®, where two pressure-controlled valves are used to control the pressure inside the chambers of a double acting hydraulic cylinder. A co-simulation environment is then established between SIMPACK® and Simulink®. The vehicle is running with speeds between 10 and 120 km/h. Active modal control makes it possible to maintain ride comfort levels of conventional bogie vehicles with this innovative single axle and single suspension step running gear, promising substantial weight savings of about 400 kg/m. The single axle running gear solution with active comfort control developed here can be an attractive alternative to bogies, providing reduced Life Cycle Costs.

Place, publisher, year, edition, pages
Springer Science and Business Media Deutschland GmbH , 2021. p. 8-17
Series
Lecture Notes in Mechanical Engineering, ISSN 2195-4356, E-ISSN 2195-4364
Keywords [en]
Active control, FE model, Hydraulic actuator modelling, Ride comfort, Structural modes
National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-326560DOI: 10.1007/978-3-031-07305-2_2Scopus ID: 2-s2.0-85136937455OAI: oai:DiVA.org:kth-326560DiVA, id: diva2:1754954
Conference
27th Symposium of the International Association of Vehicle System Dynamics, IAVSD 2021, Virtual/Online, 17-19 August 2021
Note

QC 20230626

Available from: 2023-05-05 Created: 2023-05-05 Last updated: 2023-06-26Bibliographically approved
In thesis
1. Mechatronic aspects of an innovative two-axle railway vehicle
Open this publication in new window or tab >>Mechatronic aspects of an innovative two-axle railway vehicle
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Within the Shift2Rail research program the goals for a sustainable growth of the railway sector are set. Among these are substantial reduction of Life Cycle Costs, improved reliability and energy efficiency, the reductionof noise emissions, and the achievement of full interoperability of the rolling stock. Therefore, a new generation of running gear is envisioned.

An innovative two-axle vehicle that can reduce weight, initial investmentand maintenance cost, and emissions is proposed for a metro line system. The vehicle proposed will have only one suspension step. To further reducethe weight and incorporate the otherwise missing anti-roll bar, a compositematerial connection frame is introduced. The two-axle configuration suffers from poor ride comfort, due to the lack of a second suspension step acting as filter, and from poor steering capability, due to the long distance between wheelsets. Active suspensions are therefore introduced to improve both ride comfort and steering capability.

This Ph.D. thesis showcases the key activities undertaken during the developmentof the innovative vehicle, building a simulation framework where the vehicle can be virtually tested. Several modelling environments are used such as: SIMPACK for vehicle dynamics, Abaqus for finite elements modelling, Simscape for hydraulic physics simulations, and Simulink for control logic development. During the Ph.D. time two elements of the mechatronic vehicle have been designed and manufactured, i.e. the carbon fiber connection frame and the steering active suspension. The two components models have been experimentally validated and introduced into the simulation environment. A ride comfort and a wheelset steering control strategy have been designed to overcome the limitations introduced by the two-axle configuration. The proposed solutions aim at being applicable in the whole operational scenario of the innovative vehicle.

The present work emphasises the possibility of introducing innovative mechatronic solutions as an alternative to standard bogie solutions aiming at reducing costs and emissions, blurring the boundaries between academic view and possible industrial applications.

Abstract [sv]

Inom forskningsprogrammet Shift2Rail sattes målen för en hållbar tillväxt av järnvägssektorn. Dessa mål innefattar en avsevärd minskning av livscykelkostnader, en ökad tillförlitlighet och energieffektivitet, minskning av bullerutsläpp och full driftskompatibilitet för den rullande materielen. För att uppnå målen föreslås här en ny generation av löpverk.

Ett innovativt tvåaxligt fordon som kan minska vikten, den initiala investerings- och underhållskostnaden samt utsläppen föreslås därför här för ett tunnelbanesystem. Det föreslagna fordonet kommer bara att ha ett fjädringssteg. För att ytterligare minska vikten och inkludera den annars saknade krängningshämmaren, introduceras en sammankopplande ram av kompositmaterial. Den tvåaxliga konfigurationen lider av dålig åkkomfort, eftersom det saknas ett andra fjädringssteg som fungerar som filter. På grund av det långa hjulaxelavståndet lider konfigurationen även av dålig styrförmåga. För att förbättra både åkkomfort och styrförmåga introduceras därför aktiva fjädringar.

Denna doktorsavhandling beskriver de viktigaste aktiviteterna som genomfördes under utvecklingen av det innovativa fordonet, uppbyggnaden av ett simuleringsramverk där fordonet kan testas virtuellt. Flera modelleringsmiljöer används, såsom SIMPACK för fordonsdynamik, Abaqus för modellering i finita element, Simscape för hydrauliska simuleringar och Simulink för utveckling av styrlogiken. Under doktorsarbetets gång har två delar av det mekatroniska fordonet designats och tillverkats, det är kolfiberkopplingsramen och den aktiva fjädringen i styrningen. Modellerna för dessa två komponenter har experimentellt validerats och introducerats i simuleringsmiljön. Kontrollstrategier för åkkomfort och styrningen av hjulaxlarna har utformats för att övervinna de begränsningar som den tvåaxliga konfigurationen innebär. De föreslagna lösningarna syftar till att vara tillämpliga i hela driftscenariot för det innovativa fordonet.

Detta arbete betonar möjligheten att introducera innovativa mekatroniska lösningar som ett alternativ till vanliga boggilösningar som syftar till att minska kostnader och utsläpp, och sudda ut gränserna mellan den akademiska synen och möjliga industriella tillämpningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023
Series
TRITA-SCI-FOU ; 2023:18
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-326562 (URN)978-91-8040-560-7 (ISBN)
Public defence
2023-06-02, https://kth-se.zoom.us/j/66930256556, D37, Lindstedtsvägen 9, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 230510

Available from: 2023-05-10 Created: 2023-05-05 Last updated: 2023-06-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusConference webpage

Authority records

Giossi, Rocco LiberoShipsha, AntonPersson, RickardWennhage, PerStichel, Sebastian

Search in DiVA

By author/editor
Giossi, Rocco LiberoShipsha, AntonPersson, RickardWennhage, PerStichel, Sebastian
By organisation
The KTH Railway GroupVäg- och spårfordon samt konceptuell fordonsdesignVehicle Engineering and Solid MechanicsVinnExcellence Center for ECO2 Vehicle design
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 67 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf