kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Perfluorocarbon microdroplets stabilized by cellulose nanofibers: Toward ultrasound-mediated diagnostics and therapy
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.ORCID iD: 0000-0003-2589-9780
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ultrasound contrast agents consist of gas-filled micrometer-sized bubbles that are injectedinto the blood stream. Ultrasound contrast agents are an invaluable tool for ultrasound imaging of the cardiac muscle and highly vascularized structures such as kidneys and the liver. The ability of gas-filled microbubbles to enhance contrast in ultrasound imaging comes from their increased scattering ability due to significantly lower compressibility compared to surrounding soft tissues.

The discovery of acoustic droplet vaporization, the phase-transition of liquid-filleddroplets into gas-filled microbubbles upon ultrasound exposure, has expanded the potential utility of ultrasound-mediated diagnostics and therapy to include applications such as gas embolization, histotripsy, and localized drug delivery. Multiple requirements are put onto both gas-filled microbubbles and phase-change contrast agents: they have to be non-toxic, acoustically active at clinically relevant pressure amplitudes, and their dynamic behavior has to be predictable to maximize the therapeutic or diagnostic effect while minimizing mechanical damage to surrounding healthy tissue. Novel designs of phase-change contrast agents that are able to undergo acoustic droplet vaporization could enable improved in vivo stability compared to conventional gas-filled ultrasound contrast agents.

Pickering emulsions, with solid particles used as stabilizing agents instead of surfactants, have an increased stability compared to conventional emulsions. Cellulose-based Pickering emulsions in particular have previously been investigated for biomedical applications. Cellulose is a suitable material in biomedical applications as it originates from renewable sources, is biocompatible, and the surface can be easily modified. To the author’s current knowledge, cellulose-based Pickering emulsions have not previously been investigated for ultrasound-mediated applications. It is necessary to know the mechanical and acoustic properties of novel formulations and their impact on biological cells for their translation into in vivo research and future clinical use.

In this thesis, the acoustic, mechanical, and biological properties of cellulose nanofiber(CNF)-shelled perfluoropentane (PFP) droplets, a type of Pickering emulsion, were investigated for ultrasound-mediated medical applications. Firstly, the current state-of-the-art and development of phase-change contrast agents, the mechanism behind acoustic droplet vaporization, and potential ultrasound-mediated medical applications were investigated. Secondly, a theoretical model that would describe and predict the acoustic response of CNF-shelled PFP droplets undergoing acoustic droplet vaporization was developed. Thirdly, the compressibility of CNF-shelled PFP droplets using an acoustophoretic setup was measured. Later, the effect of the geometry of the surrounding medium and acoustic parameters on the acoustic response of CNF-shelled PFP droplets was explored. Finally, the biocompatibility of CNF-shelled PFP droplets cells was investigated through a hemolysis assay and measurement of change in cell viability of breast cancer cells.

The CNF shell has a significant impact on the predicted resonance behavior and compressibility of CNF-shelled PFP droplets, as it has significantly larger bulk and Young’s modulus than previously reported shell materials. The predicted linear resonance behavior was in the upper range of medical ultrasound (5-8 MHz), making harmonic imaging at optimal conditions difficult. However, it was demonstrated that CNF-shelled PFP droplets could be imaged using a nonlinear ultrasound imaging sequence at a frequency regularly used in clinics. Thus, CNF-shelled PFP droplets were able to undergo acoustic droplet vaporization at clinically relevant conditions. The peak negative pressure of the incident acoustic wave had a significant impact on the acoustic response of CNF-shelled PFP droplets, as higher acoustic pressure amplitudes resulted in a more disruptive behavior. Finally, CNF-shelled PFP droplets did not influence the cell viability of breast cancer cells. This was true regardless of whether or not a non-encapsulated cytotoxic drug with a known impact on cell viability was present. In summary, the results of this work showed that CNF-shelled PFP droplets are biocompatible and acoustically active at clinically relevant conditions, which shows that cellulose-based Pickering emulsions have potential in ultrasound-mediated diagnostics and therapy.

Abstract [sv]

Kontrastmedel för ultraljud består av gasfyllda mikrometerstora bubblor som injiceras in i blodomloppet. Kontrastmedel för ultraljud är ett ovärderligt verktyg för ultraljudsavbildning av hjärtmuskeln och starkt vaskulariserade strukturer som njurar och lever. De gasfyllda mikrobubblorna har en förmåga att förstärka kontrasten vid ultraljudsavbildning. Denna förmåga beror på mikrobubblornas ökade spridningsförmåga som i sin tur beror på deras betydligt lägre kompressibilitet jämfört med omgivande mjukavävnader.

Upptäckten av akustisk droppförångning, fasövergången av vätskefyllda droppar till gasfyllda mikrobubblor vid ultraljudsexponering, har utökat den potentiella användbarheten av ultraljudsmedierad diagnostik och terapi till att omfatta tillämpningar som gasembolisering, histotripsi och lokal läkemedelstillförsel. Flera krav ställs på både gasfyllda mikrobubblor och kontrastmedel med fasförändring: de måste vara giftfria, akustiskt aktiva vid kliniskt relevanta tryckamplituder och deras dynamiska beteende måste vara förutsägbart för att maximera den terapeutiska eller diagnostiska effekten samtidigt som mekanisk skada på omgivande frisk vävnad minimeras. Nya formuleringar av kontrastmedel som kan genomgå akustisk droppförångning skulle kunna möjliggöra förbättrad stabilitet in vivo jämfört med konventionella kontrastmedel i form av gasfyllda mikrobubblor.

Pickeringemulsioner, där fasta partiklar används som stabiliseringsmedel istället för tensider, har en ökad stabilitet jämfört med konventionella emulsioner. Särskilt cellulosabaserade Pickeringemulsioner har tidigare undersökts för biomedicinska tillämpningar. Cellulosa är ett lämpligt material för biomedicinska tillämpningar eftersom det kommer från förnybara källor, är biokompatibelt och ytan lätt kan modifieras. Såvitt författaren vet har cellulosabaserade Pickeringemulsioner inte tidigare undersökts för ultraljudsmedierade tillämpningar. Det är nödvändigt att känna till de mekaniska och akustiska egenskaperna hos nya formuleringar och deras inverkan på biologiska celler för att de ska kunna omsättas i forskning in vivo och framtida klinisk användning.

I den här avhandlingen undersöktes de akustiska, mekaniska och biologiska egenskaperna hos perfluorpentan (PFP)-droppar med ett cellulosananofiber (CNF)-skal, en typ av Pickeringemulsion, för ultraljudsmedierade medicinska tillämpningar. För det första undersöktes de senaste rönen inom utvecklingen av kontrastmedel med fasförändring, mekanismen bakom akustisk droppförångning och potentiella ultraljudsmedierade medicinska tillämpningar. För det andra utvecklades en teoretisk modell som skulle beskriva och förutsäga den akustiska responsen hos CNF-kapslade PFP-droppar som genomgår akustisk droppförångning. För det tredje mättes kompressibiliteten hos CNF-kapslade PFP-droppar med hjälp av akustofores. Senare undersöktes effekten av det omgivande mediets form och de akustiska parametrarna på den akustiska responsen hos CNF-kapslade PFP-droppar. Slutligen undersöktes biokompatibiliteten hos CNF-kapslade PFP-droppar genom ett hemolysstest och mätning av förändringar i bröstcancercellernas cellviabilitet.

CNF-skalet har en betydande inverkan på det förutspådda resonansbeteendet och kompressibiliteten hos CNF-kapslade PFP-droppar. Detta beror på att CNF har betydligt större tryck- och elasticitetsmodul än tidigare rapporterade skalmaterial. Det förutspådda linjära resonansbeteendet låg i det övre området för medicinskt ultraljud (5-8 MHz), vilket försvårar harmonisk avbildning under optimala förhållanden. Det visades dock att CNF-kapslade PFP-droppar kunde avbildas med hjälp av en icke-linjär ultraljudsavbildningssekvens vid en frekvens som regelbundet används på kliniker. CNF-kapslade PFP-droppar kunde alltså genomgå akustisk droppförångning vid kliniskt relevanta förhållanden. Det högsta negativa trycket hos den akustiska vågen hade en betydande inverkan på den akustiska responsen hos CNF-kapslade PFP-droppar, eftersom högre akustiska tryckamplituder resulterade i ett mer splittrande beteende. Slutligen påverkade CNF-kapslade PFP-droppar inte bröstcancercellernas cellviabilitet. Detta gällde oavsett om ett icke inkapslat cytotoxiskt läkemedel med känd inverkan på cellernas viabilitet var närvarande eller inte. Sammanfattningsvis visade resultaten av detta arbete att CNF-kapslade PFP-droppar är biokompatibla och akustiskt aktiva vid kliniskt relevanta förhållanden, vilket visar att cellulosabaserade Pickeringemulsioner har potential inom ultraljudsmedierad diagnostik och terapi.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 74
Series
TRITA-CBH-FOU ; 2023:10
Keywords [en]
Ultrasound, acoustic droplet vaporization, phase-change contrast agent, Pickering emulsion, cellulose nanofiber
Keywords [sv]
Ultraljud, akustisk droppförångning, kontrastmedel med fasförändring, Pickeringemulsion, cellulosananofiber
National Category
Other Medical Engineering Medical Laboratory and Measurements Technologies
Research subject
Technology and Health
Identifiers
URN: urn:nbn:se:kth:diva-326714ISBN: 978-91-8040-522-5 (print)OAI: oai:DiVA.org:kth-326714DiVA, id: diva2:1755752
Public defence
2023-06-09, T2, Hälsovägen 11C, Huddinge, 09:00 (English)
Opponent
Supervisors
Note

QC 2023-05-09

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2023-05-16Bibliographically approved
List of papers
1. Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics
Open this publication in new window or tab >>Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics
2019 (English)In: BioMed Research International, ISSN 2314-6133, E-ISSN 2314-6141, article id 9480193Article, review/survey (Refereed) Published
Abstract [en]

Acoustic droplet vaporization (ADV) is the physical process in which liquid undergoes phase transition to gas after exposure to a pressure amplitude above a certain threshold. In recent years, new techniques in ultrasound diagnostics and therapeutics have been developed which utilize microformulations with various physical and chemical properties. The purpose of this review is to give the reader a general idea on how ADV can be implemented for the existing biomedical applications of droplet vaporization. In this regard, the recent developments in ultrasound therapy which shed light on the ADV are considered. Modern designs of capsules and nanodroplets (NDs) are shown, and the material choices and their implications for function are discussed. The influence of the physical properties of the induced acoustic field, the surrounding medium, and thermophysical effects on the vaporization are presented. Lastly, current challenges and potential future applications towards the implementation of the therapeutic droplets are discussed.

National Category
Other Medical Engineering
Identifiers
urn:nbn:se:kth:diva-255030 (URN)10.1155/2019/9480193 (DOI)000477811000001 ()31392217 (PubMedID)2-s2.0-85070102699 (Scopus ID)
Note

QC 20190716

Available from: 2019-07-15 Created: 2019-07-15 Last updated: 2023-05-09Bibliographically approved
2. Deriving acoustic properties for perfluoropentane droplets with viscoelastic cellulose nanofiber shell via numerical simulations
Open this publication in new window or tab >>Deriving acoustic properties for perfluoropentane droplets with viscoelastic cellulose nanofiber shell via numerical simulations
Show others...
2021 (English)In: Journal of the Acoustical Society of America, ISSN 0001-4966, E-ISSN 1520-8524, p. 1750-1761Article in journal (Refereed) Published
Abstract [en]

Perfluoropentane droplets with cellulose nanofibers (CNF) shells have demonstrated better stability and easier surface modification as ultrasound contrast agents and drug delivery vehicles. This paper presents a theoretical model assuming a four-phase state “inverse antibubble,” with the core filled with gas perfluoropentane surrounded by liquid perfluoropentane. A continuous, incompressible, and viscoelastic stabilizing layer separates the core from the surrounding water. A parametric study is performed to predict the frequency-dependent attenuation coefficient, the speed of sound, and the resonance frequency of the droplets which have a mean diameter of 2.4760.95 lm. Results reveal that the CNF-stabilized perfluoropentane droplets can be modeled in a Rayleigh-Plesset like equation. We conclude that the shell strongly influences the acoustic behavior of the droplets and the resonance frequency largely depends on the initial gas cavity radius. More specifically, the peak attenuation coefficient and peak-to-peak speed of sound decrease with increasing shear modulus, shear viscosity, and shell thickness, while they increase with increasing gas cavity radius and concentration. The resonance frequency increases as shear modulus and shell thickness increase, while it decreases as shear viscosity and gas cavity radius increase. It is worth mentioning that droplet concentration has no effect on the resonance frequency.

Place, publisher, year, edition, pages
Acoustical Society of America (ASA), 2021
National Category
Physical Sciences
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-302488 (URN)10.1121/10.0006046 (DOI)000754552900001 ()34598597 (PubMedID)2-s2.0-85114964063 (Scopus ID)
Note

Correction in DOI 10.1121/10.0009582

QC 20211216

Available from: 2021-09-24 Created: 2021-09-24 Last updated: 2024-03-15Bibliographically approved
3. Measuring the Compressibility of Cellulose Nanofiber-Stabilized Microdroplets Using Acoustophoresis
Open this publication in new window or tab >>Measuring the Compressibility of Cellulose Nanofiber-Stabilized Microdroplets Using Acoustophoresis
Show others...
2021 (English)In: Micromachines, E-ISSN 2072-666X, Vol. 12, no 12, p. 1465-, article id 1465Article in journal (Refereed) Published
Abstract [en]

Droplets with a liquid perfluoropentane core and a cellulose nanofiber shell have the potential to be used as drug carriers in ultrasound-mediated drug delivery. However, it is necessary to understand their mechanical properties to develop ultrasound imaging sequences that enable in vivo imaging of the vaporization process to ensure optimized drug delivery. In this work, the compressibility of droplets stabilized with cellulose nanofibers was estimated using acoustophoresis at three different acoustic pressures. Polyamide particles of known size and material properties were used for calibration. The droplet compressibility was then used to estimate the cellulose nanofiber bulk modulus and compare it to experimentally determined values. The results showed that the acoustic contrast factor for these droplets was negative, as the droplets relocated to pressure antinodes during ultrasonic actuation. The droplet compressibility was 6.6-6.8 x10(-10) Pa-1, which is higher than for water (4.4x10(-10) Pa-1) but lower than for pure perfluoropentane (2.7x10(-9) Pa-1). The compressibility was constant across different droplet diameters, which was consistent with the idea that the shell thickness depends on the droplet size, rather than being constant.

Place, publisher, year, edition, pages
MDPI, 2021
Keywords
acoustofluidics, ultrasound contrast agent, acoustic contrast factor, radiation force, compressibility, droplet vaporization, ultrasound-mediated drug delivery
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:kth:diva-307169 (URN)10.3390/mi12121465 (DOI)000736359600001 ()34945315 (PubMedID)2-s2.0-85120362365 (Scopus ID)
Note

QC 20220118

Available from: 2022-01-18 Created: 2022-01-18 Last updated: 2024-01-17Bibliographically approved
4. A Study on the Acoustic Response of Pickering Perfluoropentane Droplets in Different Media
Open this publication in new window or tab >>A Study on the Acoustic Response of Pickering Perfluoropentane Droplets in Different Media
Show others...
2021 (English)In: ACS Omega, E-ISSN 2470-1343Article in journal (Refereed) Published
Abstract [en]

Acoustic droplet vaporization (ADV) is the physical process of liquid-to-gas phase transition mediated by pressure variations in an ultrasound field. In this study, the acoustic response of novel particle-stabilized perfluoropentane droplets was studied in bulk and confined media. The oil/water interface was stabilized by cellulose nanofibers. First, their acoustic responses under idealized conditions were examined to assess their susceptibility to undergo ADV. Second, the droplets were studied in a more realistic setting and placed in a confined medium. Lastly, an imaging setup was developed and tested on the droplets. The acoustic response could be seen when the amplitude of the peak negative pressure (PNP) was above 200 kPa, suggesting that this is the vaporization pressure threshold for these droplets. Increasing the PNP resulted in a decrease in signal intensity over time, suggesting a more destructive behavior. The imaging setup was able to differentiate between the droplets and the surrounding tissue. Results obtained within this study suggest that these droplets have potential in terms of ultrasound-mediated diagnostics and therapy.

National Category
Other Medical Engineering
Research subject
Technology and Health
Identifiers
urn:nbn:se:kth:diva-290372 (URN)10.1021/acsomega.0c06115 (DOI)000626269800059 ()33681606 (PubMedID)2-s2.0-85101999959 (Scopus ID)
Note

QC 20210218

Available from: 2021-02-18 Created: 2021-02-18 Last updated: 2023-05-09Bibliographically approved
5. Cellulose Nanofiber-Coated Perfluoropentane Droplets: Fabrication and Biocompatibility Study
Open this publication in new window or tab >>Cellulose Nanofiber-Coated Perfluoropentane Droplets: Fabrication and Biocompatibility Study
Show others...
2023 (English)In: International Journal of Nanomedicine, ISSN 1176-9114, E-ISSN 1178-2013, Vol. 18, p. 1835-1847Article in journal (Refereed) Published
Abstract [en]

Purpose: To study the effect of cellulose nanofiber (CNF)-shelled perfluoropentane (PFP) droplets on the cell viability of 4T1 breast cancer cells with or without the addition of non-encapsulated paclitaxel.

Methods: The CNF-shelled PFP droplets were produced by mixing a CNF suspension and PFP using a homogenizer. The volume size distribution and concentration of CNF-shelled PFP droplets were estimated from images taken with an optical microscope and analyzed using Fiji software and an in-house Matlab script. The thermal stability was qualitatively assessed by comparing the size distribution and concentration of CNF-shelled PFP droplets at room temperature (~22°) and 37°C. The cell viability of 4T1 cells was measured using a 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a hemolysis assay was performed to assess blood compatibility of CNF-shelled PFP droplets.

Results: The droplet diameter and concentration of CNF-shelled PFP droplets decreased after 48 hours at both room temperature and 37°C. In addition, the decrease in concentration was more significant at 37°C, from 3.50 ± 0.64× 10^6 droplets/mL to 1.94 ± 0.10× 10^6 droplets/mL, than at room temperature, from 3.65 ± 0.29× 10^6 droplets/mL to 2.56 ± 0.22× 10^6 droplets/mL. The 4T1 cell viability decreased with increased exposure time and concentration of paclitaxel, but it was not affected by the presence of CNF-shelled PFP droplets. No hemolysis was observed at any concentration of CNF-shelled PFP droplets.

Conclusion: CNF-shelled PFP droplets have the potential to be applied as drug carriers in ultrasound-mediated therapy.

Keywords
cell viability, ultrasound-mediated therapy, paclitaxel, cellulose nanofibers, biocompatibility, 4T1, Pickering emulsion
National Category
Other Medical Engineering
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-325656 (URN)10.2147/ijn.s397626 (DOI)000967252800001 ()37051314 (PubMedID)2-s2.0-85152340571 (Scopus ID)
Note

QC 20230412

Available from: 2023-04-11 Created: 2023-04-11 Last updated: 2023-05-09Bibliographically approved

Open Access in DiVA

fulltext(8819 kB)367 downloads
File information
File name FULLTEXT01.pdfFile size 8819 kBChecksum SHA-512
9e3ed98592d0250fd3db433725b37ca27734a81a18770c0ddd937125a48f088e396223a885521b10e5528792a3c59488b0baef9a52c4dc8fe3023e2669a37402
Type fulltextMimetype application/pdf

Authority records

Loskutova, Ksenia

Search in DiVA

By author/editor
Loskutova, Ksenia
By organisation
Medical Imaging
Other Medical EngineeringMedical Laboratory and Measurements Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 367 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 862 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf