kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Shaping 90 wt% NanoMOFs into Robust Multifunctional Aerogels Using Tailored Bio-Based Nanofibrils
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0002-2489-8439
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore.ORCID iD: 0000-0003-4388-8970
Show others and affiliations
2022 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 38, article id 2204800Article in journal (Refereed) Published
Abstract [en]

Metal–organic frameworks (MOFs) are hybrid porous crystalline networks with tunable chemical and structural properties. However, their excellent potential is limited in practical applications by their hard-to-shape powder form, making it challenging to assemble MOFs into macroscopic composites with mechanical integrity. While a binder matrix enables hybrid materials, such materials have a limited MOF content and thus limited functionality. To overcome this challenge, nanoMOFs are combined with tailored same-charge high-aspect-ratio cellulose nanofibrils (CNFs) to manufacture robust, wet-stable, and multifunctional MOF-based aerogels with 90 wt% nanoMOF loading. The porous aerogel architectures show excellent potential for practical applications such as efficient water purification, CO2 and CH4 gas adsorption and separation, and fire-safe insulation. Moreover, a one-step carbonization process enables these aerogels as effective structural energy-storage electrodes. This work exhibits the unique ability of high-aspect-ratio CNFs to bind large amounts of nanoMOFs in structured materials with outstanding mechanical integrity—a quality that is preserved even after carbonization. The demonstrated process is simple and fully discloses the intrinsic potential of the nanoMOFs, resulting in synergetic properties not found in the components alone, thus paving the way for MOFs in macroscopic multifunctional composites. 

Place, publisher, year, edition, pages
Wiley , 2022. Vol. 34, no 38, article id 2204800
Keywords [en]
aerogels, cellulose nanofibrils, flame retardancy, gas adsorption and separation, metal–organic frameworks, supercapacitors, water purification, Aspect ratio, Carbonization, Crystalline materials, Gas adsorption, Hybrid materials, Nanocellulose, Nanofibers, Supercapacitor, Bio-based, Crystalline networks, Flame-retardancy, Gas adsorption and separations, High aspect ratio, Mechanical integrity, Metalorganic frameworks (MOFs), Nano-fibrils, Binders, Composites, Loading, Materials, Powder, Processes
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-326793DOI: 10.1002/adma.202204800ISI: 000840897400001PubMedID: 35906189Scopus ID: 2-s2.0-85135930335OAI: oai:DiVA.org:kth-326793DiVA, id: diva2:1756758
Note

QC 20230515

Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2024-05-21Bibliographically approved
In thesis
1. Functional Low-Density Materials from Cellulose Fibers and Fibrils
Open this publication in new window or tab >>Functional Low-Density Materials from Cellulose Fibers and Fibrils
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cellulose-based aerogels are emerging bio-based materials for a range of applications in the quest toward a circular and carbon-neutral society. Owing to their lightweight nature, high porosity, high specific surface area, biocompatibility, and biodegradability, cellulose aerogels are suitable for packaging, insulation, wound care products, hygiene products, and water purification. However, their commercial use is hampered by complicated time- and energy-consuming fabrication processes. Hence, industrially relevant processes with upscaling opportunities need to be developed for cellulose-based aerogels to reach their full potential. 

This thesis explores different scalable and simple methods for preparing and designing highly porous aerogels with high wet integrity using cellulose-rich fibers and cellulose nanofibrils (CNFs). As wet integrity is crucial for specific applications and enables further functionalization of the aerogels using water-based chemistry, different methods were developed to achieve wet integrity without complicated crosslinking procedures. The effects of the raw materials and processing methods on the final material properties were also carefully studied to optimize the performance for the targeted applications. Moreover, the role of the network-forming ability of CNFs in the development of functional materials with structural integrity was explored by incorporating small amounts of CNFs in aerogel systems based on macroscopic cellulose-rich fibers and nanosized metal-organic frameworks. 

Finally, the potential of the different developed cellulose-based or cellulose-reinforced aerogels with high wet integrity was demonstrated in applications for which the aerogels’ structural integrity and physical and mechanical properties are highly advantageous, such as biomedical applications, gas storage and separation, flame retardancy, and hygiene products. As demonstrated in this thesis, these functional aerogel materials could be a bio-based alternative for today’s fossil-based materials. 

Abstract [sv]

Cellulosabaserade aerogeler har på senare tid visat sig vara användbara biobaserade material för olika tillämpningar i strävan mot ett cirkulärt och kolneutralt samhälle. Materialens mycket låga densitet, höga porositet, höga specifika yta, biokompatibilitet och biologiska nedbrytbarhet innebär att cellulosaaerogeler är lämpliga för förpackningar, isolering, sårvårdsprodukter, hygienprodukter och vattenrening. Den kommersiella användningen har dock bromsats av komplicerade, tid- och energikrävande tillverkningsmetoder. Därmed måste industriellt relevanta processer med uppskalningsmöjligheter utvecklas för att cellulosabaserade aerogeler ska nå sin fulla potential. 

Denna avhandling utforskar olika skalbara och enkla metoder för att bereda och skräddarsy högporösa och våtstabila aerogeler från cellulosafibrer och cellulosananofibriller (CNFer). Eftersom våtstabilitet är avgörande för vissa tillämpningar och möjliggör ytterligare funktionalisering med vattenbaserad kemi, har ett omfattande arbete genomförts för att identifiera nya metoder för att skapa en god våtstabilitet utan att använda komplicerade tvärbindningsprocedurer. Ett stort fokus har även lagts på att klarlägga råvarans och bearbetningsmetodernas inverkan på de slutliga materialegenskaperna för att optimera prestandan för riktade tillämpningar. Dessutom har CNFers unika nätverksbildande egenskaper också utforskats i att skapa funktionella material med strukturell integritet från mycket små mängder CNFer i aerogelsystem baserade på makroskopiska cellulosarika fibrer och nanopartiklar av metallorganiska nätverk.

Slutligen demonstrerades potentialen av de framställda cellulosabaserade och cellulosaförstärkta aerogelerna med utmärkt våtstyrka i tillämpningar där deras strukturella integritet, fysikaliska och mekaniska egenskaper kan användas på ett mycket fördelaktigt sätt, till exempel biomedicinska applikationer, gaslagring och -separering, flamskydd, och hygienprodukter. Mot bakgrund av dessa resultat är det alltså rimligt att slå fast att dessa funktionella aerogeler kan utgöra möjliga biobaserade alternativ till dagens fossilbaserade material.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2024. p. 70
Series
TRITA-CBH-FOU ; 2024:20
Keywords
Aerogel, cellulose, nanotechnology, wood, fibers, nanofibrils, microfibrils, functional materials, bio-based, wet integrity, metal-organic frameworks, Aerogel, cellulosa, nanoteknologi, trä, fibrer, nanofibriller, mikrofibriller, funktionella material, biobaserad, våtstyrka, metallorganiska nätverk
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-346652 (URN)978-91-8040-933-9 (ISBN)
Public defence
2024-06-14, D1, Lindstedtsvägen 9, https://kth-se.zoom.us/j/63426784337, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council
Note

QC 20240522

Embargo godkänt av skolchef Amelie Eriksson Karlström via e-post 2024-05-14

Available from: 2024-05-22 Created: 2024-05-21 Last updated: 2025-06-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Rostami, JowanBenselfelt, TobiasSellman, Farhiya AlexCiftci, Göksu CinarLarsson, Per A.Tian, WeiqianWågberg, Lars

Search in DiVA

By author/editor
Rostami, JowanBenselfelt, TobiasSellman, Farhiya AlexCiftci, Göksu CinarLarsson, Per A.Tian, WeiqianWågberg, Lars
By organisation
Fibre TechnologyWallenberg Wood Science CenterFibre- and Polymer Technology
In the same journal
Advanced Materials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 109 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf