kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coherent structures in the turbulent stepped cylinder flow at ReD=5000
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-6712-8944
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0002-7448-3290
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. Friedrich Alexander Univ, Inst Fluid Mech, Erlangen, Germany..ORCID iD: 0000-0001-9627-5903
2023 (English)In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 102, p. 109144-, article id 109144Article in journal (Refereed) Published
Abstract [en]

The coherent structures arising in the turbulent flow around a three-dimensional stepped (or step) cylinder are studied through direct numerical simulation. This geometry is widespread in many applications and the junction substantially modifies the wake behaviour, generating three main cells. The mechanisms of vortex connections on the junction are difficult to be captured and interpreted. We thus use a high-order spectral -element methodology (SEM), and the adaptive mesh refinement technique (AMR) to adequately resolve each region of the domain, capturing the smallest turbulent scales. In this way, we can analyse the vortical interactions on the junction via the A2-criterion and understand the evolution of the train of hairpins, which appears only when the cylinder shear layer gets unstable. Together with the hairpins, four horseshoe and edge vortices coexist on the flat junction surface. A complete picture of the vortices' evolution in time is provided. To extract the large-scale, and most energetic, structures in the wake we perform a three-dimensional proper orthogonal decomposition (POD) of the flow. The first six POD modes correspond to three travelling modes which identify the large (L), the small (S) and the modulation (N) cells. The ReD trend shows that these cells persist at higher Reynolds numbers with a larger separation between the vortex shedding frequencies fN and fL. At the same time, the downwash POD mode gets less strong with a more intense and localised modulation region which affects a more extended portion of the large cylinder wake.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 102, p. 109144-, article id 109144
Keywords [en]
Stepped cylinder, Modal analysis, Vortex dynamics, Coherent structures
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-329379DOI: 10.1016/j.ijheatfluidflow.2023.109144ISI: 000998905300001Scopus ID: 2-s2.0-85154617597OAI: oai:DiVA.org:kth-329379DiVA, id: diva2:1771349
Note

QC 20230620

Available from: 2023-06-20 Created: 2023-06-20 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Space-adaptive simulation of transition and turbulence in shear flows
Open this publication in new window or tab >>Space-adaptive simulation of transition and turbulence in shear flows
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Rymdadaptiv simulering av transition och turbulens i skjuvströmning
Abstract [en]

Transitional and turbulent shear flows are ubiquitous, from the boundary layer developing on an aeroplane wing to the flow within the aortic arch. In this thesis, we study wall-bounded and free shear flows through direct numerical simulations. To control numerical errors and represent every flow structure, we implement the adaptive mesh refinement (AMR) technique within a spectral element method code. Using data-driven methods and causality metrics, we explore the fundamental physical mechanisms in various shear flows.

The adaptive mesh refinement technique necessitates a precise evaluation of the committed error. Thus, we compare the local spectral error indicator with the dual-weighted adjoint error estimator. The former ensures a more homogeneous refinement, targeting regions with a high-velocity gradient, while the latter is goal-oriented. However, the adjoint error estimator fails in turbulent flows due to the exponential sensitivity of the adjoint linear solution to any perturbation. Alternatively, we introduce a causality-based error indicator that employs the Shannon transfer entropy, i.e. a causality metric arising from information theory, to establish causal relations between the local solution and a specified quantity of interest.

Using information-theoretic causality, linear global stability analysis and modal decomposition, we investigate transitional and turbulent coherent structures. In turbulent straight pipe flows, the proper orthogonal decomposition is integrated with the Voronoi diagram to automatically discern between wall-attached and detached eddies. In spatially developing bent pipe flows, we employ the proper orthogonal decomposition to examine the swirl switching phenomenon, the origins of which continue to be a topic of debate. In the context of external flows around a cylinder, we explore two configurations: the Flettner rotor, a rotating cylinder in a wall-bounded shear flow, and the stepped cylinder, namely two cylinders of different diameters joined at one extremity. In the first configuration, we analyse the large-scale motion at the base of the rotor and the local vortex shedding suppression. In the second, we provide an in-depth look at structures arising on the junction surface and in the wake. Additionally, we conduct a global stability analysis with a novel AMR-based approach for some of the aforementioned cases.

Abstract [sv]

I denna avhandling studerar vi transitionella och turbulenta skjuvströmningar genom direkta numeriska simuleringar. Med hänsyn till den avgörande rollen av att kontrollera numeriska fel och representera varje skala i rummet, utvecklar, validerar och implementerar vi den adaptiva nätförfiningstekniken inom en spektralelementkod. Med hjälp av data-drivna metoder och mått för kausalitet utforskar vi de grundläggande fysikaliska mekanismerna i olika skjuvströmningar.

Den adaptiva nätförfiningen kräver en noggrann beräkning av det begångna felet. Således jämför vi den lokala spektrala felindikatorn med den felestimatorn från adjunkt-ekvationen. Den förra säkerställer en mer homogen förfining, inriktad på områden med en stor hastighetsgradient, medan den senare är målinriktad. Emellertid misslyckas den adjunkta felestimatorn i turbulenta flöden på grund av den exponentiella känsligheten hos den adjunkta linjära lösningen för turbulenta störningar. Som nytt alternativ introducerar vi en kausalitets-baserad felindikator som använder Shannon-transferentropin, dvs. ett kausalitets-mått som härrör från informationsteori, för att fastställa kausala samband mellan den lokala lösningen och en specificerad kvantitet av intresse.

Med hjälp av detta kausalitets-mått, linjär global stabilitetsanalys och modal dekomposition undersöker vi transitionella och turbulenta koherenta strukturer. I glatta turbulenta rörströmningar använder vi den så kallade proper orthogonal decomposition (POD) med Voronoi-diagrammet för att automatiskt skilja mellan väggnära och yttre virvlar. För strömningsfallet med ett krökt rör med 90 eller 180 grader-vinkel använder vi POD för att undersöka fenomenet swirl switching, vars ursprung fortsatt är oklart i litteraturen. I samband med den externa strömningen runt en cylinder utforskar vi två konfigurationer: Flettner-rotorn, en roterande cylinder i ett gränsskikt och den stegformade cylindern, där två cylindrar med olika diametrar är sammanfogade i ena änden. I den första konfigurationen analyserar vi den storskaliga rörelsen vid rotorns bas och den lokala förändringen av virvelamplituden. I den andra ger vi en djupgående analys av strukturer som uppstår nära mitten och i vaken. Dessutom genomför vi en global stabilitetsanalys med en ny adaptiv metod för att förstå bättre fysiken av de tidigare nämnda fallen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:10
Keywords
Turbulence, global stability, coherent structures, adaptive mesh refinement, Turbulens, global stabilitet, koherenta strukturer, adaptiv nätförfining
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-344052 (URN)978-91-8040-844-8 (ISBN)
Public defence
2024-03-27, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 240304

Available from: 2024-03-04 Created: 2024-02-29 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Massaro, DanielePeplinski, AdamSchlatter, Philipp

Search in DiVA

By author/editor
Massaro, DanielePeplinski, AdamSchlatter, Philipp
By organisation
Engineering MechanicsLinné Flow Center, FLOW
In the same journal
International Journal of Heat and Fluid Flow
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 133 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf