kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A New Point of View On Skin-Friction Contributions ni Adverse-Pressure-Gradient Turbulent Boundary Layers
Department of Particulate Flow Modelling Johannes Kepler University 4040 Linz, Austria.
Institute of Fluid Mechanics (ISTM) Karlsruhe Institute of Technology 76131 Karlsruhe, Germany.
Institute of Fluid Mechanics (ISTM) Karlsruhe Institute of Technology 76131 Karlsruhe, Germany.
Department of Mechanical Engineering Keio University 223-8522 Yokohama, Japan.
Show others and affiliations
2022 (English)In: 12th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2022, International Symposium on Turbulence and Shear Flow Phenomena, TSFP , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Skin-friction decompositions such as the so-called FIK identity (Fukagata et al., 2002) are useful tools in identifying relevant contributions to the friction, but may also lead to results difficult to interpret when the total friction is recovered from cancellation of multiple terms with large values. We propose a new formulation of the FIK contributions related to streamwise inhomogeneity, which is derived from the convective form of the momentum equation and using the concept of dynamic pressure. We examine turbulent boundary layers subjected to various pressure-gradient conditions, including cases with drag-reducing control. The new formulation distinguishes more precisely the roles of the free-stream pressure distribution, wall-normal convection, and turbulent fluctuations. Our results allow to identify different regimes in adverse-pressure-gradient turbulent boundary layers, corresponding to different proportions of the various contributions, and suggest a possible direction towards studying the onset of mean separation.

Place, publisher, year, edition, pages
International Symposium on Turbulence and Shear Flow Phenomena, TSFP , 2022.
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-329545Scopus ID: 2-s2.0-85143833783OAI: oai:DiVA.org:kth-329545DiVA, id: diva2:1772268
Conference
12th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2022, Osaka/Virtual, Japan, 19-22 July 2022
Note

QC 20230621

Available from: 2023-06-21 Created: 2023-06-21 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Vinuesa, RicardoSchlatter, Philipp

Search in DiVA

By author/editor
Vinuesa, RicardoSchlatter, Philipp
By organisation
Linné Flow Center, FLOWEngineering Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf