kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Realistic numerical simulations of concrete dam failures
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.ORCID iD: 0000-0001-5079-2649
Svenska kraftnät, Norrköping, Sweden.
FOI Swedish Defence Research Agency, Stockholm, Sweden.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.ORCID iD: 0000-0001-6840-9986
Show others and affiliations
2023 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Dam failures may have catastrophic consequences, including the release of largeamounts of water, significant property damage, and loss of life. However, safety assessments ofconcrete gravity and buttress dams often rely on simplified methods that do not consider the interactionbetween monoliths, the shape of the foundation or the presence of stiff abutments. Numericalmodeling can be a valuable tool for analyzing the stability of these dams, but it can bedifficult to validate these models due to a lack of documented dam failures. This paper presentsthe results of a numerical study examining the ability of dynamic finite element analyses to simulatedam failures. The study used the results from a series of physical model tests as a case studyfor validation. It was found that the numerical model was able to accurately reproduce the failuremode and breach development observed in the physical model tests and capture the effect of theloading rate on the failure mode and time for the failure to develop. Simulations were also performedin prototype scale to verify that the model tests were representative of a real dam failure.Further research is needed to determine the reliability of the numerical models under differentloading conditions and in realistic geological settings. However, these findings suggest that numericalmodeling can be a valuable tool for analyzing the stability of concrete gravity and buttressdams and predicting the development of failures.

Place, publisher, year, edition, pages
2023.
National Category
Infrastructure Engineering
Identifiers
URN: urn:nbn:se:kth:diva-334468OAI: oai:DiVA.org:kth-334468DiVA, id: diva2:1789727
Conference
91st Annual ICOLD Meeting, Gothenburg, Sweden, 13-14 June 2023
Note

QC 20231017

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2023-10-17Bibliographically approved
In thesis
1. Toward Realistic Failure Evaluations for Concrete Buttress Dams
Open this publication in new window or tab >>Toward Realistic Failure Evaluations for Concrete Buttress Dams
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Concrete dams, complex structures supporting massive loads, have traditionally been assessed using simplified 2D analytical stability analyses based on the rigid body assumption. Previous studies have shown that 3D behavior, such as the interaction between the monoliths and the valley's geology, can greatly impact the load-bearing capacity of gravity dams but remains largely unexplored in buttress dams. Internal failure modes have also been shown to impact the load-bearing capacity and failure modes of concrete dams. 

The dam breach geometry and breach development time are important factors for flooding simulations used for emergency plans. There are no available methods for estimating the breach parameters for concrete dams. Instead, they are usually assumed based on simplified national recommendations, which introduces large uncertainties in the analysis. Thus, developing methods to estimate failure behavior in concrete gravity and buttress dams could significantly enhance flood simulation accuracy.

This licentiate thesis aims to develop more realistic analysis methods for determining the load-bearing capacity and failure behavior of concrete buttress dams. To achieve this aim, studies using physical model tests were conducted to determine the 3D effects of the boundary conditions and the interaction between the monoliths and verify the results from finite element simulations. Numerical studies were performed to examine the failure behavior of concrete buttress dams and to determine suitable methods for such simulations. 

The results from the physical model tests suggest that 3D effects significantly impact the load-bearing capacity and the failure behavior of concrete buttress dams. Therefore, the entire dam should be considered in stability analyses rather than just single monoliths. The numerical studies showed that finite element models could successfully simulate dam failures, including the 3D behavior of concrete buttress dams and internal failure modes. However, there remain questions about the best methods for representing phenomena such as first-order roughness, valley shape, and fracture planes in these models.

The model tests showed that while dam failures can occur abruptly with little to no initial signs of displacement, the presence of rough foundations, cohesion, and rock-strengthening measures in real-world dams suggests actual dam failures may not be as sudden. The results helped establish knowledge in the field to potentially create better alarm limits for automatic monitoring systems. 

Abstract [sv]

Betongdammar är komplexa konstruktioner som bär stora laster, men traditionellt har de utvärderats med förenklade analytiska stabilitetsanalyser i 2D baserat på stelkroppsantagandet. Tidigare studier har visat att 3D-beteende, såsom interaktionen mellan monoliterna och älvdalens topologi, kan ha en betydande inverkan på lastkapaciteten hos gravitationsdammar men är i stort sett outforskat i lamelldammar. Interna brottmoder har också visats påverka bärförmågan och brottmoderna hos betongdammar.

Bräschens form och utvecklingstiden för dammbrott är viktiga faktorer för översvämningssimuleringar som används i beredskapsplanering och riskanalyser. Ingen metod finns för att uppskatta dessa parametrar för betongdammar. Istället utgår analysen från förenklade antaganden, vilka introducerar stor osäkerhet i analysen. Därmed skulle utveckling av metoder för att uppskatta brottbeteende för gravitations- och lamelldammar kunna förbättra tillförlitligheten i översvämnings-simuleringar avsevärt.

Denna licentiatuppsats, som involverar studier med fysiska modellförsök och finita element-simuleringar, syftar till att utveckla mer realistiska analysmetoder för att bestämma bärförmågan och brottbeteendet hos lamelldammar. De fysiska modellförsöken genomfördes för att bestämma 3D-effekterna av randvillkor och interaktionen mellan monoliterna och verifiera resultaten från finita element-simuleringar. Numeriska studier genomfördes för att undersöka brottbeteendet hos lamelldammar och för att bestämma lämpliga metoder för sådana simuleringar.

Resultaten från modellförsöken visade att 3D-effekter avsevärt påverkar lastkapaciteten och brottbeteendet hos lamelldammar, vilket indikerar att hela dammen bör beaktas i stabilitetsanalyser. Numeriska studier visade att finita element-modeller framgångsrikt kunde simulera dammbrott, inklusive 3D-beteendet. Dock återstår frågor om de mest effektiva metoderna för att representera fenomen som ojämn grundläggning och älvdalens topologi.

Modellförsöken visade att dammbrott kan inträffa abrupt, med liten eller ingen initial förskjutning. Dock tyder närvaron av ojämn grundläggning, kohesion och förstärkningsåtgärder i berget i verkliga dammar på att faktiska dammbrott inte är lika plötsliga som observerat i modelltesterna. Resultaten har bidragit till att utveckla kunskap inom området och kan potentiellt leda till förbättrade metoder för att fastställa larmgränser för automatiska övervakningssystem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 42
Series
TRITA-ABE-DLT ; 2335
Keywords
concrete dams, buttress dams, stability analysis, dam failure behavior, physical model tests, FEM, betongdammar, lamelldammar, stabilitetsanalys, dammbrott, fysiska modellförsök, FEM
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
urn:nbn:se:kth:diva-335979 (URN)978-91-8040-665-9 (ISBN)
Presentation
2023-10-11, L41, Drottning Kristinas väg 30, KTH Campus, Video conference link https://kth-se.zoom.us/j/69874842225, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20230915

Available from: 2023-09-15 Created: 2023-09-11 Last updated: 2023-09-18Bibliographically approved

Open Access in DiVA

fulltext(870 kB)103 downloads
File information
File name FULLTEXT01.pdfFile size 870 kBChecksum SHA-512
9dff8a010919e3b759b0c1753304c2f9b56fb5706bc88fb4e8ad0093cc00080fed9e996696135880cf00210358970921a2129168eed229e7b84080bca8d424aa
Type fulltextMimetype application/pdf

Other links

Conference website

Authority records

Enzell, JonasNordström, ErikSjölander, AndreasAnsell, Anders

Search in DiVA

By author/editor
Enzell, JonasNordström, ErikSjölander, AndreasAnsell, Anders
By organisation
Concrete Structures
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 103 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 208 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf