kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Challenges with Driverless and Unattended Train Operations
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.ORCID iD: 0000-0002-1695-4445
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Demand for transportation continues to increase, for both freight and passenger services. One of the most energy-efficient modes of transportation is rail. One solution to increase the attractiveness of rail transport is to introduce automatic train operation (ATO) with a high grade of automation (GoA). Driverless and unattended train operation could entail positive effects but would also bring challenges when removing the train driver. Thus, there is a need to understand the role of train drivers, especially in unplanned events. The main research objectiveis to understand the train driver roles during unplanned events and the frequency of such events. This thesis includes three papers to fulfill the research objective.

This thesis studied delay logs and trackside sensor logs. A qualitative method, thematic analysis, was used to identify themes of the roles performed by train driver from the delay logs. The chi-square test statistical method was used to analyze these trackside sensor logs.

Six main categories of tasks for train drivers were identified for unplanned events. Detect, Report, Inspect, Adjust, Manage passengers, and Respond to train orders. Each category was analyzed for each grade of automation by giving the responsibility for each category. The results highlight in a novel way the varied challenges between grade of automation in mainline systems. Detecting abnormalities was the most common task train drivers performed during unplanned events. Train drivers use four human senses to detect abnormalities: sight, hearing, touch, and smell. This indicates the need for onboard sensors. However, the real challenge is in processing all sensor data to gain anaccurate evaluation of any fault. One specific type of unplanned event in which the train driver is needed involves trackside sensor alarms. Freight trains are ten times more likely to trip an alarm than passenger trains. Alarms are more frequent in colder climate zones during winter months. These differences are statistically significant and indicate that not all lines and train types might be suitable for a high grade of automation.

If driverless or unattended train operation will become a reality in future, many challenges must be met. This thesis gives deeper understanding of these challenges using a novel way to identify and quantify train driver tasks during unplanned events.

Abstract [sv]

Efterfrågan på transporter fortsätter att öka, både gods- och persontransporter. Ett av de mest energieffektiva transportmedlen är järnväg. En möjlighet att öka järnvägens attraktivitet skulle kunna vara att introducera automatic train operation (ATO) med en hög grad av automatisering. Förarlös och obemannad tågdrift skulle kunna medföra postiva effekter, men det skulle också medföra utmaningar med att ta bort lokföraren. Det finns därför ett behov att förstå lokförarens roll, speciellt i oplanerade situationer. Huvudsyftet är att förstå de olika rollerna lokföraren har vid oplanerade situationer och även frekvensen av dessa situationer. Licentiatuppsatsen är uppbyggd av tre vetenskapliga artiklar för uppnå syftet.

Den här licentiatuppsatsen har använt förseningsbeskrivningar och detektorloggar. En kvalitativ metod, tematisk analys, har använts för att identifiera teman för lokförarnas olika roller utifrån förseningsbeskrivningarna. En statistisk metod, chi-square-test, har använts för att analysera detektorloggarna. 

Sex huvudkategorier av lokförarens roller vid oplanerade händelser har identifierats: Upptäcka, Rapportera, Kontrollera, Justera, Hantera resenärer och Hantera tågordrar. Varje kategori har analyserats utifrån de olika graderna av automation genom att ge visa hur de skulle kunna genomföras. Resultaten belyser de olika utmaningarna mellan graderna av automation på ett nytt sätt i ett nationellt järnvägssystem. Att upptäcka felaktigheter var den vanligaste uppgiften för lokförare vid oplanerade händelser. Lokförare använder fyra sinnen för att upptäcka felaktigheter, syn, hörsel, känsel och lukt. Det indikerar behovet av ombordsensorer, men den stora utmaningen blir att hantera all sensordata för en korrekt bedömning av verkliga fel. En specifik oplanerad händelse då lokföraren behövs är vid detektorlarm. Godståg har en tio gånger högre risk att utlösa ett detektorlarm än ett persontåg. Detektorlarm förekommer oftare i kallt klimat under vintermånader. Skillanderna är statistiskt säkerställda och ger en indikation på att alla sträckor och tågtyper inte är lämpliga för en hög grad av automatisering. 

Om förarlösa eller obemannade tåg ska bli en verklighet i framtiden behöver flera utmaningar hanteras. Den här licentiatuppsatsen ger en djupare förståelse av dessa utmaningar genom att använda ett nytt sätt att identifiera lokförarnas uppgifter vid oplanerade händelser. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 34
Series
TRITA-ABE-DLT ; 2334
Keywords [en]
Railway, Automatic train operation, Driverless trains, Train driver, Roles, Automation challenges, Human senses, Trackside sensors
National Category
Transport Systems and Logistics
Research subject
Transport Science, Transport Systems; Transport Science
Identifiers
URN: urn:nbn:se:kth:diva-334887ISBN: 978-91-8040-690-1 (print)OAI: oai:DiVA.org:kth-334887DiVA, id: diva2:1792550
Presentation
2023-09-27, M108, Brinellvägen 23, KTH Campus, https://kth-se.zoom.us/s/66592546366,, Stockholm, 14:15 (English)
Opponent
Supervisors
Funder
Swedish Transport Administration, TRV 2019/123866EU, Horizon 2020, 881806 - X2Rail-4 - H2020-S2RJU- 2019/H2020-S2RJU-CFM-2019
Note

QC230830

Available from: 2023-08-30 Created: 2023-08-29 Last updated: 2023-09-04Bibliographically approved
List of papers
1. Challenges of replacing train drivers in driverless and unattended railway mainline systems—A Swedish case study on delay logs descriptions
Open this publication in new window or tab >>Challenges of replacing train drivers in driverless and unattended railway mainline systems—A Swedish case study on delay logs descriptions
2023 (English)In: Transportation Research Interdisciplinary Perspectives, ISSN 2590-1982, Vol. 21, p. 100875-100875, article id 100875Article in journal (Refereed) Published
Abstract [en]

Currently, the challenges of driverless or unattended train operation have not been described in detail and are often grouped into one category. This paper contributes to filling a knowledge gap regarding the roles of the train driver about the potential use of automatic train operation (ATO) on high grade of automation (GoA) levels. The results contribute to a better understanding of the challenges with driverless or unattended train operation to support strategies on how to utilize ATO on a wider range of trains than is presently the case. We use the Swedish railway network as a case study and delay logs written by train dispatchers for 2019. Our research quantifies how often unplanned events occur in which the train driver is needed, and the role of the train driver in solving these problems. In addition to this we elaborate on existing GoA levels definitions and propose a revised model that highlights more aspects of the train drivers’ roles. We have identified six categories in which an action by the driver is required: Detect, Report, Inspect, Adjust, Manage passengers, and Respond to train orders. The study illustrates some of the challenges with driverless or unattended train operation, and points to the need to develop strategies not only for the driving aspects of ATO but also for the more general technical operational management of rolling stock in high GoA levels.

Keywords
Railway, Automatic train operation, Driverless trains, Train driver, Roles, Automation challenges
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:kth:diva-333356 (URN)10.1016/j.trip.2023.100875 (DOI)001141847200001 ()2-s2.0-85166931478 (Scopus ID)
Funder
Swedish Transport Administration, TRV 2019/123866
Note

QC 20230823

Available from: 2023-08-23 Created: 2023-08-23 Last updated: 2024-02-01Bibliographically approved
2. The use of human senses by train drivers to detect abnormalities
Open this publication in new window or tab >>The use of human senses by train drivers to detect abnormalities
2023 (English)In: TRA Lisbon 2022 Conference Proceedings Transport Research Arena, Elsevier BV , 2023, Vol. 72, p. 3650-3655Conference paper, Published paper (Refereed)
Abstract [en]

Driverless and unattended train operation is a foreseeable future. While many functions of the driver can be automatized and replaced but detecting abnormalities is more difficult to automate. This study investigates how train drivers detect abnormalities. The objective is to prepare the way for unattended train operation also for remote areas. Using disruption descriptions, written by train dispatchers, we have identified which senses are used by the train drivers and in which situations. Four of the human senses are used by train drivers to detect abnormalities: the visual, the auditory, the somatosensory, and the olfactory systems. The most used sense by the train drivers to detect abnormalities is the visual system. Before introducing driverless and unattended train operation, alternative tools for detecting abnormalities should be included based on the human senses.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Series
Transportation Research Procedia, ISSN 2352-1457, E-ISSN 2352-1465
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:kth:diva-334582 (URN)10.1016/j.trpro.2023.11.556 (DOI)2-s2.0-85182918130 (Scopus ID)
Conference
TRA Lisbon 2022 Conference Proceedings Transport Research Arena (TRA Lisbon 2022),14th-17th November 2022, Lisboa, Portugal
Note

QC 20231218

Available from: 2023-08-23 Created: 2023-08-23 Last updated: 2024-01-31Bibliographically approved
3. Trackside sensors in unattended train mainline systems: A case study of alarm logs from Sweden
Open this publication in new window or tab >>Trackside sensors in unattended train mainline systems: A case study of alarm logs from Sweden
2024 (English)In: 25th Euro Working Group on Transportation Meeting, Elsevier BV , 2024, Vol. 78, p. 151-157Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

Implementing unattended train operation on the mainline could make the railway more competitive by reducing operating costs since there will be no staff onboard the train. This will, however, lead to new challenges. One of those challenges is how to deal with manually controlling trackside sensor alarms. In this paper, we study all trackside sensor alarms (hotbox/hotwheel and wheel damage) in Sweden for one year (2019) to study their frequency and context. The results show that freight trains have 10 times higher frequency for alarms per train kilometer than passenger trains. There are statistically significant seasonal and climate zone differences. The highest frequency of trackside alarms occurs in wintertime in the colder climate zone. The results can be used in the development of unattended train operation support systems on the mainline.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Series
Transportation Research Procedia, ISSN 2352-1457, E-ISSN 2352-1465
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:kth:diva-334584 (URN)10.1016/j.trpro.2024.02.020 (DOI)2-s2.0-85187567497 (Scopus ID)
Conference
Euro Working Group on Transportation (EWGT), 6-8 September 2023, Santander, Spain
Note

QC 20240322

Available from: 2023-08-23 Created: 2023-08-23 Last updated: 2024-03-22Bibliographically approved

Open Access in DiVA

Summary(836 kB)500 downloads
File information
File name FULLTEXT01.pdfFile size 836 kBChecksum SHA-512
a11c804e58b8f7d108ef5e4c38a7256652f5777872f2aab0be71dbe595931fb1aa23e8b1c765521dca4c6630b5c1c072998f5640d185380303334c2a1fe8670d
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Jansson, Emil
By organisation
Transport planning
Transport Systems and Logistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 502 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 682 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf