kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Local and global scalar curvature rigidity of Einstein manifolds
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-9184-1467
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0001-7933-0034
2022 (English)In: Mathematische Annalen, ISSN 0025-5831, E-ISSN 1432-1807Article in journal (Refereed) Published
Abstract [en]

An Einstein manifold is called scalar curvature rigid if there are no compactly supported volume-preserving deformations of the metric which increase the scalar curvature. We give various characterizations of scalar curvature rigidity for open Einstein manifolds as well as for closed Einstein manifolds. As an application, we construct mass-decreasing deformations of the Riemannian Schwarzschild metric and the Taub–Bolt metric.

Place, publisher, year, edition, pages
Springer Nature , 2022.
National Category
Geometry Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-335768DOI: 10.1007/s00208-022-02521-6ISI: 000911268100001Scopus ID: 2-s2.0-85143239740OAI: oai:DiVA.org:kth-335768DiVA, id: diva2:1795564
Note

QC 20230908

Available from: 2023-09-08 Created: 2023-09-08 Last updated: 2023-09-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Dahl, MattiasKröncke, Klaus

Search in DiVA

By author/editor
Dahl, MattiasKröncke, Klaus
By organisation
Mathematics (Div.)
In the same journal
Mathematische Annalen
GeometryComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 132 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf