kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sprayed Hybrid Cellulose Nanofibril-Silver Nanowire Transparent Electrodes for Organic Electronic Applications
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.ORCID iD: 0000-0001-6465-2188
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Institute for X-ray Physics, Goettingen University, Friedrich Hund Platz 1, 37077 Goettingen, Germany, Friedrich Hund Platz 1.
Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
Show others and affiliations
2023 (English)In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 6, no 14, p. 13677-13688Article in journal (Refereed) Published
Abstract [en]

In times of climate change and resource scarcity, researchers are aiming to find sustainable alternatives to synthetic polymers for the fabrication of biodegradable, eco-friendly, and, at the same time, high-performance materials. Nanocomposites have the ability to combine several favorable properties of different materials in a single device. Here, we evaluate the suitability of two kinds of inks containing silver nanowires for the fast, facile, and industrial-relevant fabrication of two different types of cellulose-based silver nanowire electrodes via layer-by-layer spray deposition only. The Type I electrode has a layered structure, which is composed of a network of silver nanowires sprayed on top of a cellulose nanofibrils layer, while the Type II electrode consists of a homogeneous mixture of silver nanowires and cellulose nanofibrils. A correlation between the surface structure, conductivity, and transparency of both types of electrodes is established. We use the Haacke figure of merit for transparent electrode materials to demonstrate the favorable influence of cellulose nanofibrils in the spray ink by identifying Type II as the electrode with the lowest sheet resistance (minimum 5 ± 0.04 Ω/sq), while at the same time having a lower surface roughness and shorter fabrication time than Type I. Finally, we prove the mechanical stability of the Type II electrode by bending tests and its long-time stability under ambient conditions. The results demonstrate that the mixed spray ink of silver nanowires and cellulose nanofibrils is perfectly suitable for the fast fabrication of highly conductive organic nanoelectronics on an industrial scale.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2023. Vol. 6, no 14, p. 13677-13688
Keywords [en]
flexible electrodes, GISAXS, nanocellulose, nanocomposites, silver nanowires, spray deposition, thin films
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-335715DOI: 10.1021/acsanm.3c02496ISI: 001024815000001Scopus ID: 2-s2.0-85165907980OAI: oai:DiVA.org:kth-335715DiVA, id: diva2:1795816
Note

QC 20230911

Available from: 2023-09-11 Created: 2023-09-11 Last updated: 2023-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Betker, MarieAlexakis, Alexandros EfraimSöderberg, DanielRoth, Stephan V.

Search in DiVA

By author/editor
Betker, MarieAlexakis, Alexandros EfraimSöderberg, DanielRoth, Stephan V.
By organisation
Fibre- and Polymer TechnologyCoating TechnologyWallenberg Wood Science CenterFiberprocesser
In the same journal
ACS Applied Nano Materials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf