kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Toward Realistic Failure Evaluations for Concrete Buttress Dams
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.ORCID iD: 0000-0001-5079-2649
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Concrete dams, complex structures supporting massive loads, have traditionally been assessed using simplified 2D analytical stability analyses based on the rigid body assumption. Previous studies have shown that 3D behavior, such as the interaction between the monoliths and the valley's geology, can greatly impact the load-bearing capacity of gravity dams but remains largely unexplored in buttress dams. Internal failure modes have also been shown to impact the load-bearing capacity and failure modes of concrete dams. 

The dam breach geometry and breach development time are important factors for flooding simulations used for emergency plans. There are no available methods for estimating the breach parameters for concrete dams. Instead, they are usually assumed based on simplified national recommendations, which introduces large uncertainties in the analysis. Thus, developing methods to estimate failure behavior in concrete gravity and buttress dams could significantly enhance flood simulation accuracy.

This licentiate thesis aims to develop more realistic analysis methods for determining the load-bearing capacity and failure behavior of concrete buttress dams. To achieve this aim, studies using physical model tests were conducted to determine the 3D effects of the boundary conditions and the interaction between the monoliths and verify the results from finite element simulations. Numerical studies were performed to examine the failure behavior of concrete buttress dams and to determine suitable methods for such simulations. 

The results from the physical model tests suggest that 3D effects significantly impact the load-bearing capacity and the failure behavior of concrete buttress dams. Therefore, the entire dam should be considered in stability analyses rather than just single monoliths. The numerical studies showed that finite element models could successfully simulate dam failures, including the 3D behavior of concrete buttress dams and internal failure modes. However, there remain questions about the best methods for representing phenomena such as first-order roughness, valley shape, and fracture planes in these models.

The model tests showed that while dam failures can occur abruptly with little to no initial signs of displacement, the presence of rough foundations, cohesion, and rock-strengthening measures in real-world dams suggests actual dam failures may not be as sudden. The results helped establish knowledge in the field to potentially create better alarm limits for automatic monitoring systems. 

Abstract [sv]

Betongdammar är komplexa konstruktioner som bär stora laster, men traditionellt har de utvärderats med förenklade analytiska stabilitetsanalyser i 2D baserat på stelkroppsantagandet. Tidigare studier har visat att 3D-beteende, såsom interaktionen mellan monoliterna och älvdalens topologi, kan ha en betydande inverkan på lastkapaciteten hos gravitationsdammar men är i stort sett outforskat i lamelldammar. Interna brottmoder har också visats påverka bärförmågan och brottmoderna hos betongdammar.

Bräschens form och utvecklingstiden för dammbrott är viktiga faktorer för översvämningssimuleringar som används i beredskapsplanering och riskanalyser. Ingen metod finns för att uppskatta dessa parametrar för betongdammar. Istället utgår analysen från förenklade antaganden, vilka introducerar stor osäkerhet i analysen. Därmed skulle utveckling av metoder för att uppskatta brottbeteende för gravitations- och lamelldammar kunna förbättra tillförlitligheten i översvämnings-simuleringar avsevärt.

Denna licentiatuppsats, som involverar studier med fysiska modellförsök och finita element-simuleringar, syftar till att utveckla mer realistiska analysmetoder för att bestämma bärförmågan och brottbeteendet hos lamelldammar. De fysiska modellförsöken genomfördes för att bestämma 3D-effekterna av randvillkor och interaktionen mellan monoliterna och verifiera resultaten från finita element-simuleringar. Numeriska studier genomfördes för att undersöka brottbeteendet hos lamelldammar och för att bestämma lämpliga metoder för sådana simuleringar.

Resultaten från modellförsöken visade att 3D-effekter avsevärt påverkar lastkapaciteten och brottbeteendet hos lamelldammar, vilket indikerar att hela dammen bör beaktas i stabilitetsanalyser. Numeriska studier visade att finita element-modeller framgångsrikt kunde simulera dammbrott, inklusive 3D-beteendet. Dock återstår frågor om de mest effektiva metoderna för att representera fenomen som ojämn grundläggning och älvdalens topologi.

Modellförsöken visade att dammbrott kan inträffa abrupt, med liten eller ingen initial förskjutning. Dock tyder närvaron av ojämn grundläggning, kohesion och förstärkningsåtgärder i berget i verkliga dammar på att faktiska dammbrott inte är lika plötsliga som observerat i modelltesterna. Resultaten har bidragit till att utveckla kunskap inom området och kan potentiellt leda till förbättrade metoder för att fastställa larmgränser för automatiska övervakningssystem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 42
Series
TRITA-ABE-DLT ; 2335
Keywords [en]
concrete dams, buttress dams, stability analysis, dam failure behavior, physical model tests, FEM
Keywords [sv]
betongdammar, lamelldammar, stabilitetsanalys, dammbrott, fysiska modellförsök, FEM
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
URN: urn:nbn:se:kth:diva-335979ISBN: 978-91-8040-665-9 (print)OAI: oai:DiVA.org:kth-335979DiVA, id: diva2:1796005
Presentation
2023-10-11, L41, Drottning Kristinas väg 30, KTH Campus, Video conference link https://kth-se.zoom.us/j/69874842225, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20230915

Available from: 2023-09-15 Created: 2023-09-11 Last updated: 2023-09-18Bibliographically approved
List of papers
1. Post-peak behavior of concrete dams based on nonlinear finite element analyses
Open this publication in new window or tab >>Post-peak behavior of concrete dams based on nonlinear finite element analyses
2021 (English)In: Engineering Failure Analysis, ISSN 1350-6307, E-ISSN 1873-1961, Vol. 130, p. 105778-105778, article id 105778Article in journal (Refereed) Published
Abstract [en]

Dam failures are catastrophic events and in order to improve safety, engineers must have good tools for analysis and an understanding of the failure process. Since there are few cases of real failures in concrete dams, which can work as validation, physical model tests are a good way of improving numerical models and the understanding of the failure process. In this article, a physical model test of the buttress from a concrete Ambursen type dam is used as a benchmark for calibrating a FE-model. The dam failure is thereafter simulated using the concept of safety commonly used in the design codes. The advantages and drawbacks of performing load- and displacement-controlled simulations are compared. A new method for performing displacement-controlled simulations, using nonlinear springs to introduce the hydrostatic pressure and ice load is thereafter suggested and tested. The proposed method gives results which corresponds to the classical methods of analysis but has some advantages. Primarily, the new method is stable and does not suffer from convergence issues as was the case with the other methods. It is also simple to introduce in most commercial software compared to classical displacement-controlled simulations.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
General Engineering, General Materials Science
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
urn:nbn:se:kth:diva-302793 (URN)10.1016/j.engfailanal.2021.105778 (DOI)000709702900004 ()2-s2.0-85116009544 (Scopus ID)
Note

QC 20230828

Available from: 2021-10-01 Created: 2021-11-16 Last updated: 2023-09-11Bibliographically approved
2. Physical Model Tests of Concrete Buttress Dams with Failure Imposed by Hydrostatic Water Pressure
Open this publication in new window or tab >>Physical Model Tests of Concrete Buttress Dams with Failure Imposed by Hydrostatic Water Pressure
Show others...
2023 (English)In: Water, E-ISSN 2073-4441, Vol. 15, no 20, article id 3627Article in journal (Refereed) Published
Abstract [en]

Although the failure of a concrete dam is a complex and highly dynamic process, the current safety assessments of concrete gravity and buttress dams rely on a simplified 2D stability analysis, which neglects the load redistribution due to 3D monolith interactions and the valley shape. In addition, the estimation of breach parameters in concrete dams is based on assumptions rather than analyses, and better prediction methods are needed. Model tests have been conducted to increase the understanding of the failure behavior of concrete dams. A scale model buttress dam, with a scale of 1:15, consisting of 5 monoliths that were 1.2 m in height and 4 m in width, was constructed and loaded to failure using water pressure. The model dam had detachable abutment supports and shear keys to permit variations in the 3D behavior. The results showed that the shear transfer was large between the monoliths and that the failure of a single dam monolith is unlikely. A greater lateral restraint gives not only a higher failure load but also a better indication of impending failure. These findings suggest that the entire dam, including its boundary conditions, should be considered during a stability assessment. The results also suggest that the common assumption in dam safety codes that a single monolith fails during flooding analysis is not conservative. The dataset obtained provides a foundation for the future development of dam-monitoring alarm limits and for predictive models of dam-breaching processes.

Place, publisher, year, edition, pages
MDPI, 2023
Keywords
concrete dams; buttress dams; physical model tests; dam failures; stability assessment
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
urn:nbn:se:kth:diva-334840 (URN)10.3390/w15203627 (DOI)001095503200001 ()2-s2.0-85175366976 (Scopus ID)
Note

QC 20231017

Available from: 2023-08-28 Created: 2023-08-28 Last updated: 2023-11-30Bibliographically approved
3. Realistic numerical simulations of concrete dam failures
Open this publication in new window or tab >>Realistic numerical simulations of concrete dam failures
Show others...
2023 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Dam failures may have catastrophic consequences, including the release of largeamounts of water, significant property damage, and loss of life. However, safety assessments ofconcrete gravity and buttress dams often rely on simplified methods that do not consider the interactionbetween monoliths, the shape of the foundation or the presence of stiff abutments. Numericalmodeling can be a valuable tool for analyzing the stability of these dams, but it can bedifficult to validate these models due to a lack of documented dam failures. This paper presentsthe results of a numerical study examining the ability of dynamic finite element analyses to simulatedam failures. The study used the results from a series of physical model tests as a case studyfor validation. It was found that the numerical model was able to accurately reproduce the failuremode and breach development observed in the physical model tests and capture the effect of theloading rate on the failure mode and time for the failure to develop. Simulations were also performedin prototype scale to verify that the model tests were representative of a real dam failure.Further research is needed to determine the reliability of the numerical models under differentloading conditions and in realistic geological settings. However, these findings suggest that numericalmodeling can be a valuable tool for analyzing the stability of concrete gravity and buttressdams and predicting the development of failures.

National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-334468 (URN)
Conference
91st Annual ICOLD Meeting, Gothenburg, Sweden, 13-14 June 2023
Note

QC 20231017

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2023-10-17Bibliographically approved

Open Access in DiVA

summary(29726 kB)396 downloads
File information
File name SUMMARY01.pdfFile size 29726 kBChecksum SHA-512
fbdcdddb3fc6b0919b3c2ad52d4ab2abcd24437b24678706d4b299ed10a6604969e1cb810999ef182eeebfe92b65ba19f04e22a75278444cc1720fb87cd4d000
Type summaryMimetype application/pdf

Authority records

Enzell, Jonas

Search in DiVA

By author/editor
Enzell, Jonas
By organisation
Concrete Structures
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1198 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf