kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data Challenges in Asset Management of Power Distribution Systems: Review and Observations
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-4730-2095
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-2964-7233
Svenska Kraftnät, Stockholm, Sweden.
2023 (English)In: 2023 IEEE Belgrade PowerTech, PowerTech 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023Conference paper, Published paper (Refereed)
Abstract [en]

Power system asset management involves several multidisciplinary activities to ensure the reliable, efficient, and safe operation of power equipment. One aspect of effective asset management is that planning and decision making have to be data driven. However, the use of data comes with a set of challenges. In this paper, we review the state-of-the-art of asset management, data management, and their links to power systems in particular. Previous literature is reviewed methodically based on keyword search and setting scores for different parameters of interest. Asset management strategies and activities are reviewed along with trends in data management. The review concludes with an observation that data quality and data availability are the most pressing current challenges in power system asset management.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2023.
Keywords [en]
asset management, data availability, data quality, power distribution
National Category
Reliability and Maintenance
Identifiers
URN: urn:nbn:se:kth:diva-336731DOI: 10.1109/PowerTech55446.2023.10202707ISI: 001055072600043Scopus ID: 2-s2.0-85169458415OAI: oai:DiVA.org:kth-336731DiVA, id: diva2:1798582
Conference
2023 IEEE Belgrade PowerTech, PowerTech 2023, Belgrade, Serbia, Jun 25 2023 - Jun 29 2023
Note

Part of ISBN 9781665487788

QC 20230919

Available from: 2023-09-19 Created: 2023-09-19 Last updated: 2024-01-05Bibliographically approved
In thesis
1. Data Importance in Power System Asset Management
Open this publication in new window or tab >>Data Importance in Power System Asset Management
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Betydelsen av data i förvaltningen av kraftsystemets tillgångar
Abstract [en]

The current shift towards a higher degree of data-driven decision making in power system asset management highlights the importance of asset data. This thesis identifies, investigates, and proposes methods for data-related research gaps that are encountered by asset managers. These research gaps are in data availability and data quality. 

It is challenging to generalize the data availability problem on an abstract level. Thus, data availability is studied through three different case studies. Each case study addresses a factor that contributes to data availability problems. Data censoring is modeled as a data quality problem using a Monte-Carlo simulation. Lack of access to and acquisition of data are studied through event tree analysis and multiphysics modelling. These case studies reveal that even in a low data availability environment, informed decision making is feasible. 

Monte-Carlo simulation techniques are powerful when analyzing the data quality problem. Asset data quality is studied based on two perspectives; namely, maintenance optimization and reliability evaluation. First, using random population studies shows that data quality can have a notable financial and technical impact on maintenance optimization. A critical finding is that missing data can lead to distortions in estimates of the optimal replacement time of a component. It is shown that there exists a certain threshold of missing data proportion beyond which maintenance optimization becomes unreliable. The specific percentage value of this threshold depends on the failure model parameters. Second, incorporating the data quality model in a reliability test system simulation shows that the impact on the annual estimation of system- and energy-oriented reliability indices is nearly non-existent.

Finally, this thesis introduces a method to rank component types based on data quality importance. The data quality importance (DQI) ranking is derived from the Weibull function’s sensitivity to data errors. This method indicates that distortions in Weibull parameters have a non-linear impact on maintenance optimization. This leads to a conclusion that investments in data quality must be allocated based on the DQI ranking of a certain component. Reaching the right level of data quality for a component leads to efficient decision making. 

Abstract [sv]

Den nuvarande övergången mot en högre grad av datadrivet beslutsfattande inom förvaltning av kraftsystem belyser vikten av tillgång till data. Denna avhandling identifierar och undersöker och föreslår metoder för datarelaterade forskningsluckor som kapitalförvaltare möter. Dessa forskningsluckor finns i datatillgänglighet och datakvalitet.

Det är utmanande att generalisera datatillgänglighetsproblemet på en abstrakt nivå. Datatillgänglighet studeras alltså genom tre olika fallstudier. Varje fallstudie tar upp en faktor som bidrar till datatillgänglighetsproblem.  Datacensurering modelleras som ett datakvalitetsproblem med hjälp av en Monte-Carlo-simulering. Bristande tillgång till och inhämtning av data studeras genom händelseträdsanalys och multifysisk modellering. Dessa fallstudier visar att även i en miljö med låg datatillgänglighet är välgrundat beslutsfattande möjligt.

Monte-Carlo simuleringstekniker är kraftfulla när man analyserar datakvalitetsproblemet.  Tillgångsdatakvalitet studeras utifrån två perspektiv; näm-ligen underhållsoptimering och tillförlitlighetsutvärdering.  För det första visar användning av slumpmässiga befolkningsstudier att datakvalitet kan ha en betydande ekonomisk och teknisk inverkan på underhållsoptimering.  En kritisk upptäckt är att saknad data kan leda till förvrängningar i uppskattningar av den optimala utbytestiden för en komponent. Det har visat sig att det finns en viss tröskel för andelen saknad data, bortom vilken underhållsoptimering blir opålitlig.  Det specifika procentvärdet för denna tröskel beror på felmodellens parametrar.  För det andra, att införliva datakvalitetsmodellen i en simulering av tillförlitlighetstestsystem visar att effekten på den årliga uppskattningen av system- och energiorienterade tillförlitlighetsindex är nästan obefintlig.

Slutligen introducerar denna avhandling en metod för att rangordna komponenttyper baserat på datakvalitetens betydelse.  Rankningen av datakvalitetens betydelse (DQI) härleds från Weibull-funktionens känslighet för datafel.  Denna metod indikerar att förvrängningar i Weibull-parametrar har en icke-linjär inverkan på underhållsoptimering. Detta leder till slutsatsen att investeringar i datakvalitet måste allokeras utifrån DQI-rankningen av en viss komponent.  Att nå rätt nivå av datakvalitet för en komponent leder till effektivt beslutsfattande.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. x, 60
Series
TRITA-EECS-AVL ; 2024:4
Keywords
Data availability, data quality, asset management, power systems, maintenance optimization, Datatillgänglighet, datakvalitet, tillgångsförvaltning, kraftsystem, underhållsoptimering
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-341407 (URN)978-91-8040-800-4 (ISBN)
Public defence
2024-01-29, Sal F3, Lindstedtsvägen 26, Stockholm, Sweden, 15:00 (English)
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Note

QC 20240108

Available from: 2024-01-08 Created: 2024-01-05 Last updated: 2024-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Naim, WadihHilber, Patrik

Search in DiVA

By author/editor
Naim, WadihHilber, Patrik
By organisation
Electromagnetic Engineering and Fusion Science
Reliability and Maintenance

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf