kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy-Efficient Service-Aware Multi-Connectivity Scheduler for Uplink Multi-Layer Non-Terrestrial Networks
Show others and affiliations
2023 (English)In: IEEE Transactions on Green Communications and Networking, ISSN 24732400, Vol. 7, no 3, p. 1326-1341Article in journal (Refereed) Published
Abstract [en]

This paper introduces the concept of energy efficiency (EE) in the uplink with the capability of multi-connectivity (MC) in a multi-orbit non-terrestrial network (NTN), where user terminals (UTs) can be simultaneously served by more than one satellite to achieve higher peak throughput at reduced energy consumption. This concept also considers the service classification of the users, so that network dimensioning is performed in order to satisfy the quality of service (QoS) requirement of users. MC can increase throughput, but this entails increased power consumption at user terminal for uplink transmissions. To this end, an energy-efficient service-aware multi-connectivity (EE-SAMC) scheduling algorithm is developed in this paper to improve the EE of uplink communications. EE-SAMC uses available radio resources and propagation information to intelligently define a dynamic resource allocation pattern, that optimally routes traffic so as to reduce the energy consumption at the UT while ensuring QoS is maximized. EE-SAMC is designed based on the formulation of a non-convex combinatorial problem, it is solved in two ways involving firstly an optimization solution and secondly a heuristic approach. The effectiveness of EE-SAMC is compared with random allocation, round robin and heuristic schedulers in terms of EE, throughput and delay; EE-SAMC outperforms all schedulers.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2023. Vol. 7, no 3, p. 1326-1341
Keywords [en]
Energy efficiency, green communication, multi-connectivity, non-terrestrial network (NTN), resource allocation, satellite communications, scheduling
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-337543DOI: 10.1109/TGCN.2023.3269283ISI: 001051775000016Scopus ID: 2-s2.0-85144104242OAI: oai:DiVA.org:kth-337543DiVA, id: diva2:1802555
Note

QC 20231009

Available from: 2023-10-05 Created: 2023-10-05 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf