kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Opportunities for Physical Layer Security in UAV Communication Enhanced with Intelligent Reflective Surfaces
Show others and affiliations
2022 (English)In: IEEE Wireless Communications, ISSN 15361284, Vol. 29, no 6, p. 22-28Article in journal (Refereed) Published
Abstract [en]

Unmanned aerial vehicles (UAVs) are an important component of next-generation wireless networks that can assist in high data rate communications and provide enhanced coverage.Their high mobility and aerial nature offer deployment flexibility and low-cost infrastructure support to existing cellular networks and provide many applications that rely on mobile wireless communications. However, security is a major challenge in UAV communications, and physical layer security (PLS) is an important technique to improve the reliability and security of data shared with the assistance of UAVs. Recently, the intelligent reflective surface (IRS) has emerged as a novel technology to extend and/or enhance wireless coverage by reconfiguring the propagation environment of communications. This article provides an overview of how the IRS can improve the PLS of UAV networks. We discuss different use cases of PLS for IRS-enhanced UAV communications and briefly review the recent advances in this area. Then, based on the recent advances, we also present a case study that utilizes alternate optimization to maximize the secrecy capacity for an IRS-enhanced UAV scenario in the presence of multiple Eves. Finally, we highlight several open issues and research challenges to realize PLS in IRS-enhanced UAV communications. 

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 29, no 6, p. 22-28
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-337540DOI: 10.1109/MWC.001.2200125ISI: 000917339700005Scopus ID: 2-s2.0-85139900546OAI: oai:DiVA.org:kth-337540DiVA, id: diva2:1802556
Note

QC 20231009

Available from: 2023-10-05 Created: 2023-10-05 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf