kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Constant-Modulus Waveform Design With Polarization-Adaptive Power Allocation in Polarimetric Radar
Show others and affiliations
2023 (English)In: IEEE Transactions on Signal Processing, ISSN 1053587X, Vol. 71, p. 2146-2161Article in journal (Refereed) Published
Abstract [en]

In polarimetric radars, corresponding to the polarized antennas, exploiting waveform diversity along the polarization dimension becomes accessible. In this article, we aim to maximize the signal-to-interference plus noise ratio (SINR) of a polarimetric radar by optimizing the transmit polarimetric waveform, the power allocation on its horizontal and vertical polarization segments, and the receiving filters jointly, subject to separate (while practical) unit-modulus and similarity constraints. To mitigate the SINR sensitivity on Target-Aspect-Angle (TAA), the average Target-Impulse-Response Matrix (TIRM) within a certain (TAA) interval is employed as the target response, which leads to an average SINR as the metric to be maximized. For the formulated nonconvex fractional programming problem, we propose an efficient algorithm under the framework of the alternating optimization method. Within, the alternating direction method of multiplier (ADMM) is deployed to solve the inner subproblems with closed form solutions obtained at each iteration. The analysis on computational cost and convergence of the proposed algorithm is also provided. Experiment results show the effectiveness of the proposed algorithm, the robustness of the output SINR against the TAA uncertainty, and the superior performance of polarimetric power adaption.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2023. Vol. 71, p. 2146-2161
Keywords [en]
ADMM, alternating optimization, polarimetric radar, power allocation, waveform design
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-337537DOI: 10.1109/TSP.2023.3282705ISI: 001017228500006Scopus ID: 2-s2.0-85162665659OAI: oai:DiVA.org:kth-337537DiVA, id: diva2:1802562
Note

QC 20231009

Available from: 2023-10-05 Created: 2023-10-05 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf