kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of geomagnetic disturbances on power transformers: risk assessment of extreme events and data availability
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-4730-2095
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-2964-7233
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science. Swedish National Grid, Stockholm, Sweden.ORCID iD: 0000-0003-2025-5759
2022 (English)In: Life Cycle Reliability and Safety Engineering, ISSN 2520-1352, Vol. 11, no 1, p. 11-18Article in journal (Refereed) Published
Abstract [en]

Certain rare events can have a drastic impact on power systems. Such events are generally known as high-impact low-probability (HILP) events. It is challenging to predict the occurrence of a HILP event mainly due to lack of data or sparsity and scarcity of data points. Yet, it is essential to implement an evidence-driven asset management strategy. In this paper, event tree analysis is used to assess the risk of power transformer failure due to a geomagnetically induced currents (GIC). Those currents are caused by geomagnetic disturbances in Earth’s magnetic field due to solar activity. To assess the impact on power transformers, an understanding of the mechanism and sequence of sub-events that lead to failure is required to be able to construct an event tree. Based on the constructed event tree, mitigation actions can be derived. GIC blockers or reducers can be used. However, that would require extensive installation and maintenance efforts, and the impact on system reliability has to be studied. Also, such technology is still in its infancy and needs extensive validation. A suggested alternative is to combine early warning data from solar observatories with a load management plan to keep transformers below their rated operation point such that a DC offset due to GIC would not cause magnetic core saturation and overheating. Load management and the risk of early warning false positives can incur a negative effect on reliability. Nevertheless, the risk assessment performed in this paper show that incorporating load management in asset planning is a viable measure that would offset the probability of catastrophic failure.

Place, publisher, year, edition, pages
Springer Nature , 2022. Vol. 11, no 1, p. 11-18
Keywords [en]
Data availability, Extreme events, Geomagnetic storm, Power system asset management, Risk analysis
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-338419DOI: 10.1007/s41872-021-00179-8Scopus ID: 2-s2.0-85146276467OAI: oai:DiVA.org:kth-338419DiVA, id: diva2:1806622
Note

QC 20231023

Available from: 2023-10-23 Created: 2023-10-23 Last updated: 2024-01-05Bibliographically approved
In thesis
1. Data Importance in Power System Asset Management
Open this publication in new window or tab >>Data Importance in Power System Asset Management
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Betydelsen av data i förvaltningen av kraftsystemets tillgångar
Abstract [en]

The current shift towards a higher degree of data-driven decision making in power system asset management highlights the importance of asset data. This thesis identifies, investigates, and proposes methods for data-related research gaps that are encountered by asset managers. These research gaps are in data availability and data quality. 

It is challenging to generalize the data availability problem on an abstract level. Thus, data availability is studied through three different case studies. Each case study addresses a factor that contributes to data availability problems. Data censoring is modeled as a data quality problem using a Monte-Carlo simulation. Lack of access to and acquisition of data are studied through event tree analysis and multiphysics modelling. These case studies reveal that even in a low data availability environment, informed decision making is feasible. 

Monte-Carlo simulation techniques are powerful when analyzing the data quality problem. Asset data quality is studied based on two perspectives; namely, maintenance optimization and reliability evaluation. First, using random population studies shows that data quality can have a notable financial and technical impact on maintenance optimization. A critical finding is that missing data can lead to distortions in estimates of the optimal replacement time of a component. It is shown that there exists a certain threshold of missing data proportion beyond which maintenance optimization becomes unreliable. The specific percentage value of this threshold depends on the failure model parameters. Second, incorporating the data quality model in a reliability test system simulation shows that the impact on the annual estimation of system- and energy-oriented reliability indices is nearly non-existent.

Finally, this thesis introduces a method to rank component types based on data quality importance. The data quality importance (DQI) ranking is derived from the Weibull function’s sensitivity to data errors. This method indicates that distortions in Weibull parameters have a non-linear impact on maintenance optimization. This leads to a conclusion that investments in data quality must be allocated based on the DQI ranking of a certain component. Reaching the right level of data quality for a component leads to efficient decision making. 

Abstract [sv]

Den nuvarande övergången mot en högre grad av datadrivet beslutsfattande inom förvaltning av kraftsystem belyser vikten av tillgång till data. Denna avhandling identifierar och undersöker och föreslår metoder för datarelaterade forskningsluckor som kapitalförvaltare möter. Dessa forskningsluckor finns i datatillgänglighet och datakvalitet.

Det är utmanande att generalisera datatillgänglighetsproblemet på en abstrakt nivå. Datatillgänglighet studeras alltså genom tre olika fallstudier. Varje fallstudie tar upp en faktor som bidrar till datatillgänglighetsproblem.  Datacensurering modelleras som ett datakvalitetsproblem med hjälp av en Monte-Carlo-simulering. Bristande tillgång till och inhämtning av data studeras genom händelseträdsanalys och multifysisk modellering. Dessa fallstudier visar att även i en miljö med låg datatillgänglighet är välgrundat beslutsfattande möjligt.

Monte-Carlo simuleringstekniker är kraftfulla när man analyserar datakvalitetsproblemet.  Tillgångsdatakvalitet studeras utifrån två perspektiv; näm-ligen underhållsoptimering och tillförlitlighetsutvärdering.  För det första visar användning av slumpmässiga befolkningsstudier att datakvalitet kan ha en betydande ekonomisk och teknisk inverkan på underhållsoptimering.  En kritisk upptäckt är att saknad data kan leda till förvrängningar i uppskattningar av den optimala utbytestiden för en komponent. Det har visat sig att det finns en viss tröskel för andelen saknad data, bortom vilken underhållsoptimering blir opålitlig.  Det specifika procentvärdet för denna tröskel beror på felmodellens parametrar.  För det andra, att införliva datakvalitetsmodellen i en simulering av tillförlitlighetstestsystem visar att effekten på den årliga uppskattningen av system- och energiorienterade tillförlitlighetsindex är nästan obefintlig.

Slutligen introducerar denna avhandling en metod för att rangordna komponenttyper baserat på datakvalitetens betydelse.  Rankningen av datakvalitetens betydelse (DQI) härleds från Weibull-funktionens känslighet för datafel.  Denna metod indikerar att förvrängningar i Weibull-parametrar har en icke-linjär inverkan på underhållsoptimering. Detta leder till slutsatsen att investeringar i datakvalitet måste allokeras utifrån DQI-rankningen av en viss komponent.  Att nå rätt nivå av datakvalitet för en komponent leder till effektivt beslutsfattande.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. x, 60
Series
TRITA-EECS-AVL ; 2024:4
Keywords
Data availability, data quality, asset management, power systems, maintenance optimization, Datatillgänglighet, datakvalitet, tillgångsförvaltning, kraftsystem, underhållsoptimering
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-341407 (URN)978-91-8040-800-4 (ISBN)
Public defence
2024-01-29, Sal F3, Lindstedtsvägen 26, Stockholm, Sweden, 15:00 (English)
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Note

QC 20240108

Available from: 2024-01-08 Created: 2024-01-05 Last updated: 2024-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Naim, WadihHilber, PatrikShayesteh, Ebrahim

Search in DiVA

By author/editor
Naim, WadihHilber, PatrikShayesteh, Ebrahim
By organisation
Electromagnetic Engineering and Fusion Science
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf