kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Toward Continuous Molecular Testing Using Gold-Coated Threads as Multi-Target Electrochemical Biosensors
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0001-7002-1382
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0001-7454-7189
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0001-6371-6055
Show others and affiliations
2023 (English)In: Biosensors, ISSN 2079-6374, Vol. 13, no 9, article id 844Article in journal (Refereed) Published
Abstract [en]

Analytical systems based on isothermal nucleic acid amplification tests (NAATs) paired with electroanalytical detection enable cost-effective, sensitive, and specific digital pathogen detection for various in situ applications such as point-of-care medical diagnostics, food safety monitoring, and environmental surveillance. Self-assembled monolayers (SAMs) on gold surfaces are reliable platforms for electroanalytical DNA biosensors. However, the lack of automation and scalability often limits traditional chip-based systems. To address these challenges, we propose a continuous thread-based device that enables multiple electrochemical readings on a functionalized working electrode Au thread with a single connection point. We demonstrate the possibility of rolling the thread on a spool, which enables easy manipulation in a roll-to-roll architecture for high-throughput applications. As a proof of concept, we have demonstrated the detection of recombinase polymerase amplification (RPA) isothermally amplified DNA from the two toxic microalgae species Ostreopsis cf. ovata and Ostreopsis cf. siamensis by performing a sandwich hybridization assay (SHA) with electrochemical readout.

Place, publisher, year, edition, pages
MDPI AG , 2023. Vol. 13, no 9, article id 844
Keywords [en]
chronoamperometry, isothermal DNA amplification, metal-coated threads, roll-to-roll, sandwich hybridization assay, self-assembled monolayers
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-338402DOI: 10.3390/bios13090844ISI: 001074469800001PubMedID: 37754078Scopus ID: 2-s2.0-85172180625OAI: oai:DiVA.org:kth-338402DiVA, id: diva2:1806714
Note

QC 20231023

Available from: 2023-10-23 Created: 2023-10-23 Last updated: 2023-10-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Hanze, MartinKhaliliazar, ShirinReu, PedroToldrà Filella, AnnaHamedi, Mahiar

Search in DiVA

By author/editor
Hanze, MartinKhaliliazar, ShirinReu, PedroToldrà Filella, AnnaHamedi, Mahiar
By organisation
Fibre Technology
In the same journal
Biosensors
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf