Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Spaces of data naturally carry intrinsic geometry. Statistics and machine learning can leverage on this rich structure in order to achieve efficiency and semantic generalization. Extracting geometry from data is therefore a fundamental challenge which by itself defines a statistical, computational and unsupervised learning problem. To this end, symmetries and metrics are two fundamental objects which are ubiquitous in continuous and discrete geometry. Both are suitable for data-driven approaches since symmetries arise as interactions and are thus collectable in practice while metrics can be induced locally from the ambient space. In this thesis, we address the question of extracting geometry from data by leveraging on symmetries and metrics. Additionally, we explore methods for statistical inference exploiting the extracted geometric structure. On the metric side, we focus on Voronoi tessellations and Delaunay triangulations, which are classical tools in computational geometry. Based on them, we propose novel non-parametric methods for machine learning and statistics, focusing on theoretical and computational aspects. These methods include an active version of the nearest neighbor regressor as well as two high-dimensional density estimators. All of them possess convergence guarantees due to the adaptiveness of Voronoi cells. On the symmetry side, we focus on representation learning in the context of data acted upon by a group. Specifically, we propose a method for learning equivariant representations which are guaranteed to be isomorphic to the data space, even in the presence of symmetries stabilizing data. We additionally explore applications of such representations in a robotics context, where symmetries correspond to actions performed by an agent. Lastly, we provide a theoretical analysis of invariant neural networks and show how the group-theoretical Fourier transform emerges in their weights. This addresses the problem of symmetry discovery in a self-supervised manner.
Abstract [sv]
Datamängder innehar en naturlig inneboende geometri. Statistik och maskininlärning kan dra nytta av denna rika struktur för att uppnå effektivitet och semantisk generalisering. Att extrahera geometri ifrån data är därför en grundläggande utmaning som i sig definierar ett statistiskt, beräkningsmässigt och oövervakat inlärningsproblem. För detta ändamål är symmetrier och metriker två grundläggande objekt som är allestädes närvarande i kontinuerlig och diskret geometri. Båda är lämpliga för datadrivna tillvägagångssätt eftersom symmetrier uppstår som interaktioner och är därmed i praktiken samlingsbara medan metriker kan induceras lokalt ifrån det omgivande rummet. I denna avhandling adresserar vi frågan om att extrahera geometri ifrån data genom att utnyttja symmetrier och metriker. Dessutom utforskar vi metoder för statistisk inferens som utnyttjar den extraherade geometriska strukturen. På den metriska sidan fokuserar vi på Voronoi-tessellationer och Delaunay-trianguleringar, som är klassiska verktyg inom beräkningsgeometri. Baserat på dem föreslår vi nya icke-parametriska metoder för maskininlärning och statistik, med fokus på teoretiska och beräkningsmässiga aspekter. Dessa metoder inkluderar en aktiv version av närmaste grann-regressorn samt två högdimensionella täthetsskattare. Alla dessa besitter konvergensgarantier på grund av Voronoi-cellernas anpassningsbarhet. På symmetrisidan fokuserar vi på representationsinlärning i sammanhanget av data som påverkas av en grupp. Specifikt föreslår vi en metod för att lära sig ekvivarianta representationer som garanteras vara isomorfa till datarummet, även i närvaro av symmetrier som stabiliserar data. Vi utforskar även tillämpningar av sådana representationer i ett robotiksammanhang, där symmetrier motsvarar handlingar utförda av en agent. Slutligen tillhandahåller vi en teoretisk analys av invarianta neuronnät och visar hur den gruppteoretiska Fouriertransformen framträder i deras vikter. Detta adresserar problemet med att upptäcka symmetrier på ett självövervakat sätt.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 61
Series
TRITA-EECS-AVL ; 2024:26
Keywords
Machine Learning, Computational Geometry, Voronoi, Delaunay, Symmetry, Equivariance
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-344129 (URN)978-91-8040-864-6 (ISBN)
Public defence
2024-04-09, https://kth-se.zoom.us/j/61437033234?pwd=dnBpMnYyaDVWWC95RHNTakNXWkNRQT09, F3 (Flodis) Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note
QC 20240304
2024-03-042024-03-022024-03-08Bibliographically approved