kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design for 3D Concrete Printing: Optimisation Through Integrated Workflows
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures. KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies.
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The transition from conventional cast concrete to 3D Concrete Printing (3DCP) marks a paradigm shift by directly depositing fresh concrete layer upon layer according to a digital model without the need for a formwork. This technology offers the possibility of achieving innovative and complex geometries in an automated process. Additionally, the implicit digitalisation introduced by this technology streamlines the interaction among different stakeholders, thereby reducing human errors and augmenting construction quality.

Nevertheless, despite its potential, methods for fully exploiting the design capabilities of 3DCP are still largely underdeveloped. This is primarily due to the assumed separation between the design process and the generation of manufacturing instructions. While the current driver for this technology is linked to increasing productivity and reducing labour costs, its most significant contribution may well be in the manufacturing of material-efficient structures by automatically integrating structural analysis into the designprocess.

This licentiate thesis aims to extend the design scope for this rapidly maturing technology by investigating its design possibilities, relevant printing parameters, and structural optimisation capabilities within the inherent restrictions of the process. The research focuses on the development of integrated design-to-manufacture workflows for the manipulation, analysis, and optimisation of print paths considering material and process constraints. Additionally, a comprehensive literature review is conducted, with a particular emphasis on the expansive design capabilities of 3DCP.

Experimental studies encompassed the design, manufacturing, and testing of concrete prototypes using a custom-made 3DCP system based on a robotic arm. The results demonstrated that customised material distributions can be successfully programmed and executed, resulting in prototypes with enhanced structural performance. Laboratory tests on topology-optimised unreinforced 3DCP beams revealed a substantial increase in load-bearing capacity per unit weight compared to conventional 3D printing patterns. The thesis aligns with the broader sustainability goals of the construction industry. Even though the cement content in 3D printed concrete currently tends to be higher compared to conventional methods, the potential of the technology for optimising material use, minimising waste, and incorporating additional functionalities to structures presents significant opportunitiesfor reducing the environmental footprint of concrete construction. By integrating manufacturing constraints into the design process, this study delineates a pathway for extending the design possibilities of 3DCP toward the implementation of material-efficient structures with graded properties. Ultimately, this study contributes to bridging the gap between digital design and digital fabrication methods, thereby advancing concrete construction practices.

Abstract [sv]

Övergången från traditionell gjuten betong till 3D-betongutskrift 3D Concrete} Printing eller 3DCP) markerar ett paradigmskifte genom att direkt deponera färsk betong lager för lager enligt en digital modell, utan behov av formar.  Denna teknik erbjuder möjligheter att uppnå innovativa och komplexa geometrier genom en automatiserad process. Dessutom förenklar digitaliseringen interaktionen mellan olika intressenter, vilket minskar mänskliga fel och ökar byggkvaliteten.

Denna licentiatavhandling syftar till att utvidga designomfånget för denna snabbt växande teknik genom att undersöka dess designmöjligheter, relevanta utskriftsparametrar och kapaciteter för strukturell optimering inom de rådande begränsningarna av processen. Forskningen fokuserar på utvecklingen av integrerade design-till-tillverkning-flöden för styrning, analys och optimering av utskriftsvägar med hänsyn till material- och processbegränsningar. Dessutom genomförs en omfattande litteraturöversikt med särskild betoning på 3DCP:s expansiva designkapacitet.

Experimentella studier omfattade design, tillverkning och testning av betongprototyper med ett skräddarsytt 3DCP-system baserat på en robotarm. Resultaten visade att anpassade materialfördelningar framgångsrikt kan programmeras och genomföras, vilket resulterade i prototyper med förbättrad strukturell prestanda. Laboratorietester på topologioptimerade oarmerade 3DCP-balkar visade en betydande ökning av bärförmåga per enhetsvikt jämfört med konventionella 3D-utskriftsmönster.

Forskningen ligger i linje med byggbranschens övergripande hållbarhetsmål. Även om cementinnehållet i 3D-utskriven betong för närvarande tenderar att vara högre jämfört med konventionella metoder, erbjuder teknologin potential att optimera materialanvändning, minimera spill och lägga till funktionaliteter i konstruktioner, vilket ger möjligheter att minska betongkonstruktioners miljöavtryck. Genom att integrera tillverkningsbegränsningar i designprocessen skisserar denna studie en väg för att utöka designmöjligheterna för 3DCP mot implementering av material-effektiva konstruktioner med varierande egenskaper. Slutligen bidrar denna studie till att överbrygga klyftan mellan digital design och digitala tillverkningsmetoder, och därmed främja betongbyggandets metoder.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 117
Series
TRITA-ABE-DLT ; 2348
Keywords [en]
3D concrete printing, digital fabrication, concrete structures, additive manufacturing, robotic fabrication, design for manufacturing, structural optimisation, functionally graded concrete, topology optimisation.
Keywords [sv]
3D-betongutskrift, digital tillverkning, betongkonstruktioner, additiv tillverkning, robotstyrd tillverkning, design för tillverkning, strukturell optimering, funktionellt graderad betong, topologioptimering.
National Category
Building Technologies Architectural Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
URN: urn:nbn:se:kth:diva-340013ISBN: 978-91-8040-785-4 (print)OAI: oai:DiVA.org:kth-340013DiVA, id: diva2:1814422
Presentation
2023-12-18, B1, Brinellvägen 23, KTH Campus, public video confeference link https://kth-se.zoom.us/j/63851449450, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20231124

Available from: 2023-11-24 Created: 2023-11-24 Last updated: 2023-12-18Bibliographically approved
List of papers
1. Grading Material Properties in 3D Printed Concrete Structures
Open this publication in new window or tab >>Grading Material Properties in 3D Printed Concrete Structures
2022 (English)In: Nordic Concrete Research, ISSN 0800-6377, Vol. 66, no 1, p. 73-89Article in journal (Refereed) Published
Abstract [en]

Functionally graded materials (FGMs) describe composite materials with a gradual change in properties along one or several axes. A major advantage with this approach is the avoidance of discontinuities between different layers of material. 3D Printing offers the possibility to control the material composition and spatial placement along the printing process to create structures with graded properties. However, there are very few examples of the application of this approach to 3D concrete printing (3DCP). This paper presents a review of the current approaches of and methods to grade the material properties of a 3DCP structure, as well as a review of similar methods used in other 3D printing processes. Finally, the potential applicability of these principles into concrete are presented and discussed.

Place, publisher, year, edition, pages
Walter de Gruyter GmbH, 2022
Keywords
3D concrete printing, additive manufacturing, functionally graded materials, digital fabrication
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-315883 (URN)10.2478/ncr-2022-0004 (DOI)000825200600006 ()
Note

QC 20220728

Available from: 2022-07-28 Created: 2022-07-28 Last updated: 2023-11-24Bibliographically approved
2. Spatially Graded Modeling: An Integrated Workflow For 3D Concrete Printing
Open this publication in new window or tab >>Spatially Graded Modeling: An Integrated Workflow For 3D Concrete Printing
2023 (English)In: Proceedings of the XXVII Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2023), 2023Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

While 3D concrete printing (3DCP) has surged in popularity, methods to harness its design potential remain largely underdeveloped. Existing design-to-manufacture workflows most commonly restrict the design to the overall geometry and a set of print parameters that may fall outside of the scope of the designer. This study presents a novel approach to integrate design and manufacturing by an integrated design-to-manufacture workflow that allows the gradation of the wall thickness along the printed part, which can be independently manipulated using established computer graphic techniques like texture projection and mesh coloring. The effectiveness of this workflow is demonstrated through the fabrication of a test body featuring a customized surface pattern. This approach aims to extend the design scope for 3DCP, enabling the addition and editing of surface patterns without geometry or code manipulation.

Keywords
Robotic fabrication, 3D concrete printing, Variable filament width, Design for manufacturing, Print path design.
National Category
Building Technologies Architecture
Research subject
Architecture, Architectural Technology
Identifiers
urn:nbn:se:kth:diva-340011 (URN)
Conference
XXVII SIGraDi Conference 2023, 29 NOV - 1 DEC, 2023, Maldonado, Uruguay
Note

QC 20231124

Available from: 2023-11-24 Created: 2023-11-24 Last updated: 2025-02-24Bibliographically approved
3. Internal topology optimisation of 3D printed concrete structures: A method for enhanced performance and material efficiency
Open this publication in new window or tab >>Internal topology optimisation of 3D printed concrete structures: A method for enhanced performance and material efficiency
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Extrusion-based 3D concrete printing (3DCP) is a promising technique for fabricating complex concrete elements without formwork, offering advantages like cost reduction and enhanced design flexibility by decoupling manufacturing costs from part complexity. By placing material only where structurally needed, 3DCP can lead to significant material savings, potentially reducing the environmental footprint of the construction industry. However, this extended formal freedom is still constrained by the fabrication process and material properties. This paper presents a novel method for applying topology optimisation internally i.e., preserving the external boundaries of the concrete element while reducing material use and weight. This method adapts the extrusion thickness along the part according to the expected stresses, reducing the material use while enhancing structural performance. To validate this method, the mechanical behaviour of three different unreinforced 3DCP beams is tested in three-point bending. Results show that beams with optimised material distributions presented a higher strength-to-weight ratio than the conventional 3D printed beam. An important advantage of the proposed method is that it can be easily implemented in existing 3DCP systems without specialised equipment. This paper demonstrates the potential of internal topology optimisation for improving the efficiency and sustainability of 3DCP.

Keywords
3D concrete printing, additive manufacturing, optimised concrete, robotic fabrication, design-to-manufacture workflow
National Category
Building Technologies Architectural Engineering
Research subject
Architecture, Architectural Technology
Identifiers
urn:nbn:se:kth:diva-340012 (URN)
Note

QC 20231124

Available from: 2023-11-24 Created: 2023-11-24 Last updated: 2024-05-15Bibliographically approved

Open Access in DiVA

summary(31545 kB)3732 downloads
File information
File name SUMMARY01.pdfFile size 31545 kBChecksum SHA-512
a379ad4231bff06e7696d60662ff8853df2f770b4bdb69076c9651fbd10a06ffc4e38e970c59da6273247da5b24262cad14013dec91b91442e6fc17f1a382224
Type summaryMimetype application/pdf

Authority records

Hernández Vargas, Jose

Search in DiVA

By author/editor
Hernández Vargas, Jose
By organisation
Concrete StructuresArchitectural Technologies
Building TechnologiesArchitectural Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 963 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf