kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimum Coupling of Thermal Energy Storage and Power Cycles
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-6108-5229
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-4932-7103
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0002-7804-667X
2023 (English)In: Proceedings of ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023, American Society of Mechanical Engineers (ASME) , 2023, article id v006t09a010Conference paper, Published paper (Refereed)
Abstract [en]

The present work proposes a methodology that enables decision-making in selecting the adequate power cycle and Thermal Energy Storage (TES) type for a wide range of operating temperatures between 380 and 1200 °C. A broad spectrum of power block configurations has been explored including steam Rankine, gas turbine, supercritical CO2, (sCO2) combined gas turbine with Rankine, and combined gas turbine with sCO2. The study also evaluated molten salt, particle, and air packed bed TES to identify the most cost-effective power cycle and TES combination. A techno-economic optimization has been conducted aimed at minimizing the Levelized Cost of Storage (LCOS) for different plant capacities and charging costs. Results show that coupling of a sCO2 power block with recompression and intercooling with a particle TES is the most cost-effective solution for a 100 MWe plant with 12 hours of storage and a charging cost of 50 EUR/MWh. This achieved an LCOS value of 154.7 EUR/MWh at 750 °C with a 200 °C temperature difference. Particle-based energy storage is the most cost-effective option for a wide range of temperature combinations, while an intercooled sCO2 power block with an air-packed bed TES should be preferred when electricity is free, and storage represents a significant portion of the capital cost. Molten salt TES is the optimal choice provided that the design temperatures align with the limitations of the salts.

Place, publisher, year, edition, pages
American Society of Mechanical Engineers (ASME) , 2023. article id v006t09a010
Keywords [en]
Carnot Battery, Electric heater, Molten salt, Packed bed, Particle, sCO2, Thermal Energy Storage
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-340380DOI: 10.1115/GT2023-103939ISI: 001215583900027Scopus ID: 2-s2.0-85177173924OAI: oai:DiVA.org:kth-340380DiVA, id: diva2:1816814
Conference
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023, Boston, United States of America, Jun 26 2023 - Jun 30 2023
Note

Part of ISBN 9780791886991

QC 20231204

Available from: 2023-12-04 Created: 2023-12-04 Last updated: 2024-06-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Guccione, SalvatoreTrevisan, SilviaGuédez, Rafael

Search in DiVA

By author/editor
Guccione, SalvatoreTrevisan, SilviaGuédez, Rafael
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf