kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Revealing the active microstructure decay mechanism in a novel martensitic dual-hardening steel during rolling contact fatigue
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Properties. Ovako.ORCID iD: 0000-0002-1015-202X
Ovako.ORCID iD: 0000-0001-8415-0214
Scatterin AB.ORCID iD: 0000-0001-8463-6142
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures.ORCID iD: 0000-0003-3002-134X
Show others and affiliations
2023 (English)Manuscript (preprint) (Other academic)
Abstract [en]

We investigate the microstructural degradation during rolling contact fatigue (RCF) in a novel martensitic dual-hardening steel. The microstructural decay that eventually leads to fatigue failure is studied by electron microscopy, atom probe tomography and synchrotron X-ray diffraction (SXRD). The initial microstructure of the steelconsists of tempered martensite with a fine dispersion of secondary M7C3, and NiAl precipitates. During RCF testing at 2.2 GPa contact pressure, ferrite microbands develop and the partial dissolution of NiAl and M7C3 precipitates occur within theferrite microbands. For the RCF testing at higher contact pressure of 2.8 GPa, nanosized ferrite grains develop in the ferrite microbands. The SXRD analysis reveals a decrease in dislocation density in the sub-surface region experiencing microstructural decay. This is believed to be associated with the rearrangement of dislocations into low energy configuration cells. We conclude this manuscript by proposing a microstructure decay mechanism for dual-hardening martensitic steels that provides insights in the fatigue initiation process.

Place, publisher, year, edition, pages
2023.
Keywords [en]
Dual-hardening steel, bearing steel, microstructural decay, dislocation density, rolling contact fatigue
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-342132OAI: oai:DiVA.org:kth-342132DiVA, id: diva2:1827505
Note

QC 20240116

Available from: 2024-01-14 Created: 2024-01-14 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Microstructural Decay in High-Strength Bearing Steels under Rolling Contact Fatigue
Open this publication in new window or tab >>Microstructural Decay in High-Strength Bearing Steels under Rolling Contact Fatigue
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis aims to enhance our understanding of material decay in high-strength steels used for bearing applications. The primary objective is to investigate the microstructural changes in two high-strength steels: 52100 steels, a popular bearing steel, and Hybrid 60, a relatively new bearing steel designed for long fatigue life and use at elevated temperatures. In addition, the investigations were also carried out on a low-carbon low-alloy steel (Hardox 400). The evolution of the microstructure of these materials under rolling contact fatigue (RCF) conditions was investigated in detail.

The results revealed distinct microstructural alterations in the region of maximum shear stress beneath the raceway surface, observed in all three steels under investigation. These alterations include the presence of ferrite microbands, dissolution of carbides and precipitates, and the formation of nano-ferrite grains. The decayed regions exhibit differences in mechanical properties compared to the virgin material. In all materials, the presence of both ferrite microbands and nano-ferrite is associated with the rearrangement of dislocations into low-energy configurations, induced by stress-induced cyclic flow during RCF.

Hybrid 60 exhibits a lower area fraction of material decay after the same number of stress cycles (\(1.0 \times 10^8\)) compared to 52100 steel and Hardox 400. This difference can be ascribed to the highly effective dislocation pinning provided by the precipitates and their thermodynamic stability in Hybrid 60, which reduce the likelihood of the formation of dislocation substructure in the stressed region, thereby enhancing its resistance to softening.In contrast to 52100 and Hardox steel where cementite precipitates and  \(\varepsilon\)-Fe\(_2\)C carbides are present, the carbon content in 52100 steel plays a more significant role in influencing the dislocation movement under cyclic loading. A higher carbon content results in enhanced solid solution hardening and improved resistance to RCF in 52100 steel. The high carbon content in 52100 steel makes it harder for dislocations to move under the applied cyclic load, increasing resistance to deformation and microstructural change during RCF compared to Hardox 400. 

In the case of Hybrid 60 steel, dislocation movement is constrained by the formation of secondary carbides and NiAl intermetallic precipitates. The material's resistance to the formation of dislocation cells and ferrite bands is intricately linked to its ability to withstand the dissolution of precipitates through dislocation shearing. These findings highlight the crucial role of alloy carbides in preventing material deterioration. Despite lower levels of interstitial carbon, the alloyed steel (Hybrid 60) exhibits enhanced durability when subject to RCF in comparison with 52100 steel.

Abstract [sv]

Arbetet presenterat i denna avhandling syftar till att öka förståelsen för materialdegradering i höghållfasta stål använda för lagerapplikationer. Det primära målet är att undersöka mikrostrukturella förändringar i två höghållfasta stål: 52100-stål, ett populärt lagerstål, och Hybrid 60, ett relativt nytt lagerstål designat för lång livslängd vid utmattning och användning vid förhöjda temperaturer. Dessutom utfördes undersökningar även på ett lågkoligt låglegerat stål (Hardox 400). Materialets beteende under experiment med rullande kontaktutmattning (RCF) undersöks.

Resultaten avslöjar tydliga mikrostrukturella förändringar i området med maximal skjuvspänning under loppets yta, observerade i alla tre stålsorter under undersökningen. Dessa förändringar inkluderar närvaron av ferritmikrobånd, upplösning av karbider och utfällningar samt bildandet av nano-ferritkorn. De degraderade områdena uppvisar skillnader i mekaniska egenskaper jämfört med det orörda materialet. I samtliga material är närvaron av både ferritmikrobånd och nano-ferrit kopplad till omarrangeringen av dislokationer i lågenergi konfigurationer, inducerade av stressinducerad cyklisk deformation under RCF.Hybrid 60 uppvisar en lägre områdesfraktion av materialdegradering efter samma antal strescykler (\(1.0 \times 10^8\)) jämfört med 52100-stål och Hardox 400. Denna skillnad kan tillskrivas den högt effektiva dislokationspinnen som tillhandahålls av utfällningarna och deras termodynamiska stabilitet i Hybrid 60, vilket minskar sannolikheten för bildandet av dislokationssubstruktur i det belastade området och därmed ökar dess motståndskraft mot mjukning.I motsats till 52100 och Hardox-stål där cementitutfällningar och \(\varepsilon\)-Fe\(_2\)C-karbid är närvarande, spelar kolhalten i 52100-stål en mer betydande roll i påverkan av dislokationsrörelse under cyklisk belastning. En högre kolhalt resulterar i förbättrad lösninghärdning och förbättrad motståndskraft mot RCF i 52100-stål. Den höga kolhalten i 52100-stål gör det svårare för dislokationer att röra sig under den applicerade cykliska belastningen, vilket ökar motståndet mot deformation och mikrostrukturell förändring under RCF jämfört med Hardox 400.

I fallet med Hybrid 60-stål begränsas dislokationsrörelsen av bildandet av sekundära karbider och NiAl-intermetalliska utfällningar. Materialets motstånd mot bildandet av dislokationsceller och ferritmikroband är intimt kopplat till dess förmåga att motstå upplösningen av utfällningar genom dislokationsskärning. Dessa resultat belyser den avgörande rollen av legeringskarbider för att förhindra materialförsämring. Trots lägre nivåer av interstitiellt kol uppvisar legerat stål (Hybrid 60) förbättrad hållbarhet när det utsätts för RCF jämfört med 52100-stål.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 113
Series
TRITA-ITM-AVL ; 2024:3
Keywords
Microstructural decay, microscopy, rolling contact fatigue, Hybrid 60 steel, Bearing steel, 52100, dislocations, ferrite microbands, Mikrostrukturell nedbrytning, mikroskopi, rullande kontaktfatigue, Hybrid 60-stål, dislokationer
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-342136 (URN)978-91-8040-799-1 (ISBN)
Public defence
2024-02-09, Kollegiesalen / https://kth-se.zoom.us/j/65525297472, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2024-01-18 Created: 2024-01-15 Last updated: 2024-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Loaiza, TaniaYildiz, ABDahlström, AlexanderBabu Revathy Rajan, PrasathHedström, Peter

Search in DiVA

By author/editor
Loaiza, TaniaOoi, SteveYildiz, ABDahlström, AlexanderBabu Revathy Rajan, PrasathHedström, Peter
By organisation
PropertiesStructuresMaterials Science and Engineering
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf