kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defining Power System Health: Framework and Process towards a System Health Index
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-6779-4082
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-2964-7233
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0003-2025-5759
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The health index has traditionally been devised and calculated for individual assets within a power system. This index provides vital details about an asset’s overall health and allows for a standardized comparison among various assets. However, the intricate nature of power systems poses significant challenges when trying to adapt this methodology for a broader, global power system health index. To tackle this obstacle, this paper proposes an innovative framework for evaluating power system health. The framework’s primary purpose is either to monitor the performance of a power system within a defined jurisdiction (such as a country, region, or utility) over time and identify trends/changes or to compare the performance across various jurisdictions. This paper further presents a comprehensive overview of key concepts that play a vital role in determining power system health. These include the driving factors, performance metrics, and associated costs, all of which are under the careful supervision of asset management. Special attention is given to the physical dimensions of the security of electricity supply, which represent the performance-based aspect of power system health and constitute the foundation for the power system health index. Each performance-based dimension is thoroughly reviewed, and a list of relevant key performance indicators is provided for every dimension. 

Keywords [en]
Power system health, asset management, security of supply, health index, data analysis
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-342702OAI: oai:DiVA.org:kth-342702DiVA, id: diva2:1831781
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, CP26
Note

Submitted to Heliyon,2023.

QC 20240130

Available from: 2024-01-26 Created: 2024-01-26 Last updated: 2024-01-30Bibliographically approved
In thesis
1. Security of Electricity Supply in Power Systems: Establishing a Global Framework for Assessing Power System Health and Analyzing Outage Statistics in Sweden
Open this publication in new window or tab >>Security of Electricity Supply in Power Systems: Establishing a Global Framework for Assessing Power System Health and Analyzing Outage Statistics in Sweden
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The primary objective of this thesis is to enhance the security of electricity supply by providing a holistic perspective and introducing a comprehensive framework for assessing power system health. This novel approach aims for a thorough evaluation of the system’s overall performance and well-being, using the physical dimensions of the security of supply as the foundation for a power system health index. 

After establishing the theoretical framework, relevant and available data is collected in order to analyze and understand the system’s performance. By analyzing outage statistics in Sweden, the research identifies specific trends and performance metrics that can be further investigated and segmented according to various criteria. The insights gained from this research can, in turn, be used to inform proactive maintenance strategies and capacity planning, ultimately mitigating the risks of outages and ensuring a more reliable electricity supply. 

Outage statistics are furthermore analyzed from the aspect of data quality, focusing on inconsistencies and missing values in the outage reports, i.e. unknown outage causes and unidentified faulty equipment. By carefully examining the data, noticeable gaps and deficiencies are revealed. Thus, a format for improving outage reporting using a database with 3 relations (outage summary, outage breakdown and customer breakdown) is proposed. In addition to a qualitative analysis of the data, various machine learning algorithms are explored and tested for their capability to predict the unknown values within the dataset, thereby offering a twofold solution: enhancing the accuracy of outage data and facilitating deeper, more accurate analytical capabilities. The findings and proposals within this work highlight the current challenges within outage data management and also lay the groundwork for a more comprehensive, data-driven approach in outage management and policy development. 

Abstract [sv]

Det primära syftet med denna avhandling är att förbättra elförsörjningstryggheten genom att tillhandahålla ett holistiskt perspektiv och införa ett heltäckande ram- verk för att bedöma kraftsystemets hälsa. Detta nya tillvägagångssätt syftar till en grundlig utvärdering av systemets övergripande prestanda och välbefinnande, med hjälp av de fysiska dimensionerna av försörjningstryggheten som grunden för ett hälsoindex för kraftsystemet. 

Efter att ha upprättat det teoretiska ramverket samlas relevant och tillgäng- lig data in för att analysera och förstå systemets prestanda. Genom att analysera avbrottsstatistik i Sverige identifierar forskningen specifika trender och prestations- mått som kan undersökas ytterligare och segmenteras enligt olika kriterier. Insik- terna från denna forskning kan i sin tur användas för att informera om proaktiva underhållsstrategier och kapacitetsplanering, för att i slutändan minska riskerna för avbrott och säkerställa en mer tillförlitlig elförsörjning. 

Avbrottsstatistiken analyseras vidare ur aspekten datakvalitet, med fokus på inkonsekvenser och saknade värden i avbrottsrapporterna, det vill säga okända av- brottsorsaker och oidentifierad felaktig utrustning. Genom att noggrant granska uppgifterna avslöjas märkbara luckor och brister. Därför föreslås ett format för att förbättra avbrottsrapporteringen med hjälp av en databas med 3 relationer (avbrottsöversikt, avbrottsuppdelning och kunduppdelning). Förutom en kvalitativ analys av data, utforskas och testas olika maskininlärningsalgoritmer med avseen- de på deras förmåga att förutsäga de okända värdena i datamängden, och erbjuder därmed en tvåfaldig lösning: förbättrar avbrottsdatans noggrannhet och underlättar djupare, mer exakta analytiska möjligheter. Resultaten och förslagen inom detta arbete belyser de nuvarande utmaningarna inom hantering av avbrottsdata och lägger också grunden för ett mer omfattande, datadrivet tillvägagångssätt inom avbrottshantering och policyutveckling. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 56
Series
TRITA-EECS-AVL ; 2024:11
Keywords
security of electricity supply, power system health, outage statistics, data analysis
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-342706 (URN)978-91-8040-824-0 (ISBN)
Public defence
2024-02-19, https://kth-se.zoom.us/j/68367508107, Kollegiesalen, Brinellvägen 6, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, CP26
Note

QC 20240129

Available from: 2024-01-29 Created: 2024-01-29 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

fulltext(1287 kB)203 downloads
File information
File name FULLTEXT01.pdfFile size 1287 kBChecksum SHA-512
5a2899b47cdb046f3fee010b3edba207a940e19871b98db6827398d51e98ed066e731d330ec836ec1642d588aa25f38cf088307df308184d967702d9d075c815
Type fulltextMimetype application/pdf

Authority records

Duvnjak Zarkovic, SanjaHilber, PatrikShayesteh, Ebrahim

Search in DiVA

By author/editor
Duvnjak Zarkovic, SanjaHilber, PatrikShayesteh, Ebrahim
By organisation
Electromagnetic Engineering and Fusion Science
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 203 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 245 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf