kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhancing the Strength and Flexibility of Microfibrillated Cellulose Films from Lignin-Rich Kraft Pulp
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.ORCID iD: 0000-0003-3611-2250
Stockholm Univ, Div Mat & Environm Chem, SE-10691 Stockholm, Sweden..
Valmet AB, Fiber Proc Business Unit, SE-65115 Karlstad, Sweden..
Show others and affiliations
2023 (English)In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, no 47, p. 16793-16805Article in journal (Refereed) Published
Abstract [en]

Recent progress in nanocellulose production favors lignin-rich raw fibers due to their cost effectiveness, higher yield of unbleached pulp, and added benefits from residual lignin, positioning them as ideal substitutes for fossil-based materials in composites and packaging. Nonetheless, their application has been impeded due to their inferior mechanical properties. This study introduces a simplified method to enhance the strength of lignin-containing microfibrillated cellulose (LMFC) films using water as a plasticizer during drying. Both LMFC from unbleached pulps and lignin-free microfibrillated cellulose (MFC) from fully bleached industrial kraft pulp were prepared through an environmentally friendly and scalable method. Given the charged carboxylic groups from hemicellulose and residual lignin, the LMFC gel demonstrated greater colloidal stability compared to MFC. Moreover, lignin-rich films displayed heightened hydrophobicity and exceptional thermal stability (T-max > 345 degrees C). A significant improvement in tensile strength and Young's modulus of LMFC films was achieved with an elevated drying temperature from 40 degrees C to above 90 degrees C, increasing tensile strength from 248 to 283 MPa and Young's modulus by 84%. These improvements are attributed to the thermoplastic nature of lignin and the plasticizing effect of water at elevated temperatures. The longer fibers in microfibrillated films also improved the resistance to cracking in a folded state. The study highlights that enhancement of the properties of lignin-rich films can occur during the film making step itself, hinting at a sustainable, innovative method for creating robust and scalable materials for flexible devices, biocomposites, and packaging.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2023. Vol. 11, no 47, p. 16793-16805
Keywords [en]
lignin-rich cellulose, microfibrillated cellulose, film, drying, flexibility, strengthenhancement
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-343058DOI: 10.1021/acssuschemeng.3c05086ISI: 001141323500001Scopus ID: 2-s2.0-85178151774OAI: oai:DiVA.org:kth-343058DiVA, id: diva2:1835482
Note

QC 20240206

Available from: 2024-02-06 Created: 2024-02-06 Last updated: 2024-11-13Bibliographically approved
In thesis
1. Lignin-Rich Microfibrillated Cellulose Films: From Production to Application
Open this publication in new window or tab >>Lignin-Rich Microfibrillated Cellulose Films: From Production to Application
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lignocellulosic biomass, particularly wood-derived cellulose, offers an abundant and renewable resource for producing advanced bio-based materials. This thesis explores the development and application of lignin-rich microfibrillated cellulose (LMFC) films produced from high-kappa number kraft pulp, highlighting their potential as sustainable alternatives to petrochemical-based materials. The research focuses on understanding the influence of residual lignin and raw fiber characteristics on the properties of LMFC films. The effects of drying conditions on the physicochemical and mechanical properties of these films were also investigated.

The study demonstrates that residual lignin enhances the thermal stability and hydrophobicity of the films while also improving their mechanical properties under optimized processing conditions. Furthermore, hardwood and softwood pulps exhibit distinct fibrillation behaviors, with softwood-derived LMFC films showing superior tensile strength due to the formation of more fiber joints within the fiber networks. The exceptional mechanical performance of LMFC films, comparable to chemically modified cellulose nanofibers, demonstrates their potential for industrial applications. These lignin-rich films show promise in high-value fields such as battery, organic dye adsorption, and proton exchange application. Notably, LMFC films are ideal candidates as separators in aqueous zinc-ion batteries, where their enhanced wet tensile strength, superior electrolyte uptake, and good ionic conductivity enable stable cycling performance. Additionally, the films' enhanced affinity for cationic organic dyes positions them as effective and eco-friendly adsorbents for water treatment. The findings of this thesis contribute to the sustainable development of bio-based cellulose materials by optimizing lignocellulosic resources for a wide range of applications. 

Abstract [sv]

Biomassa från lignocellulosa, särskilt cellulosa från trä, utgör en rikligt förekommande och förnybar resurs för produktion av avancerade biobaserade material. Denna avhandling undersöker utvecklingen och tillämpningen av ligninrik mikrofibrillerad cellulosa (LMFC)-filmer, framställda av hög-kappa sulfatmassa, och belyser dess potential som hållbart alternativ till petrokemiskt baserade material. Forskningen fokuserar på att förstå hur restlignin och råfiberkarakteristika påverkar egenskaperna hos LMFC-filmer. Effekterna av torkningsförhållanden på de fysikalisk-kemiska och mekaniska egenskaperna hos dessa filmer undersöktes också.

Studien visar att restlignin ökar den termiska stabiliteten och hydrofobiciteten hos filmerna samt förbättrar deras mekaniska egenskaper under optimerade bearbetningsförhållanden. Vidare uppvisar lövträ- och barrträmassor olika fibrilleringsbeteenden, där LMFC-filmer framställda från barrträ visar överlägsen draghållfasthet på grund av bildningen av fler fiberförbindelser inom fibernätverket. Den exceptionella mekaniska prestandan hos LMFC-filmer, jämförbar med kemiskt modifierade cellulosananofibrer, visar deras potential för industriella tillämpningar. Dessa ligninrika filmer har lovande användningsområden inom högvärdesfält som batterier, organisk färgadsorption och protonutbytande tillämpningar. Särskilt LMFC-filmer är idealiska kandidater som separatorer i vattenbaserade zink-jonbatterier, där deras förbättrade våtstryka, överlägsna elektrolytupptag och goda jonledningsförmåga möjliggör stabil cyklingsprestanda. Dessutom ger filmernas ökade affinitet för katjoniska organiska färgämnen dem till effektiva och miljövänliga adsorbenter för vattenrening. Resultaten i denna avhandling bidrar till hållbar utveckling av biobaserade cellulosamaterial genom optimering av lignocellulosaresurser för ett brett spektrum av tillämpningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 70
Series
TRITA-CBH-FOU ; 2024:56
Keywords
Lignin-rich cellulose, microfibrillated cellulose, cellulose film, drying, bio-based materials, separator, dye adsorption, proton exchange, Ligninrik cellulosa, mikrofibrillerad cellulosa, cellulosafilm, torkning, biobaserade material, separator, färgadsorption, protonutbyte
National Category
Paper, Pulp and Fiber Technology Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-356245 (URN)978-91-8106-123-9 (ISBN)
Public defence
2024-12-12, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20241115

Embargo t.o.m. 2025-12-12 godkänt av skolchef Amelie Eriksson Karlström via e-post 2024-12-03

Available from: 2024-11-15 Created: 2024-11-13 Last updated: 2025-01-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Li, HuisiKulachenko, ArtemSevastyanova, Olena

Search in DiVA

By author/editor
Li, HuisiKulachenko, ArtemSevastyanova, Olena
By organisation
Fibre- and Polymer TechnologySolid MechanicsWallenberg Wood Science CenterWood Chemistry and Pulp Technology
In the same journal
ACS Sustainable Chemistry and Engineering
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 160 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf