kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Joint Learning of Network Topology and Opinion Dynamics Based on Bandit Algorithms
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). (Digital Futures)ORCID iD: 0000-0003-2641-2962
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). (Digital Futures)ORCID iD: 0000-0001-9234-4932
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). (Digital Futures)ORCID iD: 0000-0001-9940-5929
2023 (English)Conference paper, Published paper (Refereed)
Abstract [en]

We study joint learning of network topology and a mixed opinion dynamics, in which agents may have different update rules. Such a model captures the diversity of real individual interactions. We propose a learning algorithm based on multi-armed bandit algorithms to address the problem. The goal of the algorithm is to find each agent's update rule from several candidate rules and to learn the underlying network. At each iteration, the algorithm assumes that each agent has one of the updated rules and then modifies network estimates to reduce validation error. Numerical experiments show that the proposed algorithm improves initial estimates of the network and update rules, decreases prediction error, and performs better than other methods such as sparse linear regression and Gaussian process regression.

Place, publisher, year, edition, pages
Elsevier BV , 2023. p. 664-669
Keywords [en]
bandit algorithms, identification, network inference, Social networks
National Category
Control Engineering Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-343163DOI: 10.1016/j.ifacol.2023.10.1643Scopus ID: 2-s2.0-85183643938OAI: oai:DiVA.org:kth-343163DiVA, id: diva2:1836065
Conference
22nd IFAC World Congress, Yokohama, Japan, Jul 9 2023 - Jul 14 2023
Note

Part of ISBN 9781713872344

QC 20240208

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2024-02-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Xing, YuSun, XudongJohansson, Karl H.

Search in DiVA

By author/editor
Xing, YuSun, XudongJohansson, Karl H.
By organisation
Decision and Control Systems (Automatic Control)
Control EngineeringComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf