Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
In the heavy-duty automotive industry, cavitation erosion is a recurring issue for the components of the engine cooling system. It is caused by the repeated implosion of bubbles in a liquid, such as the coolant, and can seriously damage exposed components through surface roughening, pitting and debris generation. Severe wear is common in cylinder liners and retarder pumps, for example, and leads to high maintenance costs, safety risks and vehicle downtime. The research presented here was therefore elaborated to supply missing knowledge on the damage mechanisms of engine component materials, mostly cast irons, and what metallurgical factors affect their performance. Some of their interactions with different coolant formulations and with operational parameters that emulate the cooling system environment were also investigated.
Using an ultrasonic test rig based in ASTM G32, samples of several cast iron grades were exposed to various coolant mixtures. Different test setups with the direct and indirect methods, amplitudes and temperatures were also investigated. The analyses comprised sample weight change and surface damage documentation by scanning electron microscopy.
The indirect test method and lower amplitudes led to much lower mass loss. Higher glycol concentrations and the presence of inhibitors lead to less damage. Surprisingly, however, used coolants collected from serviced trucks were less aggressive than their fresh counterparts. A boron nitride suspension in fresh coolant led to an outstanding reduction in mass loss, potentially granting long-lasting protection by dissipating the impact load. This finding is promising for the development of unconventional solutions and for a deeper understanding of bubble dynamics in complex environments.
Analyses of damage initiation at very early test times suggest that most of the impact load originates in the cavitation cloud as pressure waves, imparting stresses on the whole surface, whereas damage from individual bubble implosions may be rare and less important.
For the cast irons, hardness and microstructure are, together, a strong predictor of cavitation resistance. Compacted and lamellar graphite are detrimental graphite forms; ferrite also lowers cavitation resistance; pearlite, steadite and ausferrite are beneficial. Damage evolution consists of graphite removal, matrix chipping around voids and pit expansion, with contributions from surface and subsurface cracks. With no graphite in their structure, steels usually perform significantly better than irons. Fatigue cracking was found to be the predominant fracture mechanism in milder cavitation loads. These findings open further possibilities for optimizing materials for cavitation-intensive applications in prolonged exposures for which other solutions, such as coatings, are not possible.
Abstract [sv]
Ett återkommande problem inom den tunga fordonsindustrin är kavitations\-erosion, som drabbar komponenterna i motorns kylsystem. Den orsakas av upprepade implosioner av bubblor i vätska, så som kylarvätska, och kan allvarligt skada exponerade komponenter genom förgrovning av ytor, gropbildning och bildande av partiklar. På exempelvis cylinderfoder och retarder är kraftigt slitage vanligt, vilket medför höga underhållskostnader, säkerhetsrisker och stilleståndstid för fordonet. Denna studie tillför saknad kunskap om skademekanismerna hos material i motorkomponenter, främst gjutjärn, samt vilka metallurgiska faktorer som påverkar materialens prestanda. Interaktioner med olika kylvätskekompositioner och driftpara- metrar som efterliknar kylsystemets arbetsmiljö undersöktes också.
Med hjälp av en testrigg med ultraljudsteknik i enlighet med ASTM G32 exponerades prover av flera olika gjutjärnskvaliteter för olika kylvätskeblandningar. Provnings\-upplägg innefattande direkt och indirekt metod, samt olika amplituder och inverkan av temperaturen studerades. Analyserna omfattade massförlust av prover och dokumentation av ytskador med svep\-elektron\-mikroskopi.
Den indirekta metoden samt lägre amplituder gav mycket lägre massförlust. Högre glykolkoncentrationer samt närvaro av korrosionsinhibitorer ledde till mindre skador. Förvånande nog var använda kylvätskor insamlade från servade lastbilar mindre aggressiva än motsvarande färska blandningar. En suspension av bornitrid i färsk kylvätska gav enastående reduktion av massförlust, vilket potentiellt kan ge långvarigt skydd genom att dämpa slagbelastningen. Denna upptäckt är lovande för utveckling av okonventionella lösningar samt för en djupare förståelse av bubbeldyna- mik i komplexa miljöer.
Analys av skadeinitiering vid mycket korta testtider tyder på att större delen av stötbelastningen härstammar från kavitationsmolnet i form av tryckvågor, vilka påverkar hela ytan, medan skador från enskilda bubbelimplosioner är sällsynta och av mindre betydelse.
För gjutjärnen förutsäger hårdhet och mikrostruktur tillsammans kavitationstålig- heten. Kompakt och lamellär grafit är skadliga grafitformer; ferrit sänker också kavitations- motståndet; medan perlit, steadit och ausferrit är gynnsamma. Skadeut- vecklingen består av grafiturgröpning, avflagning av grundmassa runt gropor och tillväxt av gropar, med bidrag från sprickor vid och under ytan. Eftersom stålen saknar grafit i sin struktur presterar de vanligtvis avsevärt bättre än gjutjärn. Utmattningssprickbildning visade sig vara den dominerande brottmekanismen vid mildare kavitationsbelastningar. Dessa resultat öppnar för ytterligare möjligheter att optimera material för kavitationsintensiva tillämpningar under långvariga exponeringar där andra lösningar, såsom ytbeläggningar, inte är möjliga.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xix, 81
Series
TRITA-ITM-AVL ; 2025:23
Keywords
cavitation erosion; cast iron; engine coolant; damage mechanisms; hardness; fatigue
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-363885 (URN)978-91-8106-323-3 (ISBN)
Public defence
2025-06-13, D3 / https://kth-se.zoom.us/j/69078439839, Lindstetsvägen 5, Stockholm, 10:00 (English)
Opponent
Supervisors
2025-05-262025-05-222025-06-09Bibliographically approved