kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Decoupled supercapacitive electrolyzer for membrane-free water splitting
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0002-5625-630X
Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain., Ap. 99.
Departamen-to de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain., Ap. 99.
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0002-0074-3504
2024 (English)In: Science Advances, E-ISSN 2375-2548, Vol. 10, no 10, p. 3180-Article in journal (Refereed) Published
Abstract [en]

Green hydrogen production via water splitting is vital for decarbonization of hard-to-abate industries. Its integration with renewable energy sources remains to be a challenge, due to the susceptibility to hazardous gas mixture during electrolysis. Here, we report a hybrid membrane-free cell based on earth-abundant materials for decoupled hydrogen production in either acidic or alkaline medium. The design combines the electrocatalytic reactions of an electrolyzer with a capacitive storage mechanism, leading to spatial/temporal separation of hydrogen and oxygen gases. An energy efficiency of 69% lower heating value (48 kWh/kg) at 10 mA/cm2 (5 cm-by-5 cm cell) was achieved using cobalt-iron phosphide bifunctional catalyst with 99% faradaic efficiency at 100 mA/cm2. Stable operation over 20 hours in alkaline medium shows no apparent electrode degradation. Moreover, the cell voltage breakdown reveals that substantial improvements can be achieved by tunning the activity of the bifunctional catalyst and improving the electrodes conductivity. The cell design offers increased flexibility and robustness for hydrogen production.

Place, publisher, year, edition, pages
American Association for the Advancement of Science (AAAS) , 2024. Vol. 10, no 10, p. 3180-
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-344602DOI: 10.1126/sciadv.adi3180ISI: 001187009700017PubMedID: 38446878Scopus ID: 2-s2.0-85187160629OAI: oai:DiVA.org:kth-344602DiVA, id: diva2:1845990
Note

QC 20240412

Available from: 2024-03-20 Created: 2024-03-20 Last updated: 2024-04-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Toledo-Carrillo, Esteban AlejandroDutta, Joydeep

Search in DiVA

By author/editor
Toledo-Carrillo, Esteban AlejandroDutta, Joydeep
By organisation
Materials and Nanophysics
In the same journal
Science Advances
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf