kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparision of tire rolling resistance measuring methods for different surfaces
Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.ORCID iD: 0000-0003-4199-5860
Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
Show others and affiliations
2024 (English)In: International Journal of Automotive Technology, E-ISSN 1976-3832Article in journal (Refereed) Epub ahead of print
Abstract [en]

The rolling resistance of car tires is one of the most important parameters characterizing tires today. This resistance has a very significant contribution to the energy consumption of wheeled vehicles. The climate crisis has forced tire and car manufacturers to place great emphasis on the environmental impact of their products. Paradoxically, the development of electric vehicles has led to an even greater importance of rolling resistance, because in electric vehicles a large part of the influence of grade resistance and inertial resistance has been eliminated due to re-generative braking, which resulted in rolling resistance and air resistance remain as the most important factors. What is more, electric and hybrid vehicles are usually heavier so the rolling resistance is increased accordingly. To optimize tires for rolling resistance, representative test methods must exist. Unfortunately, the current standards for measuring rolling resistance assume that tests are carried out in conditions that are far from real road conditions. This article compares the results of rolling resistance tests conducted in road conditions with the results of laboratory tests conducted on roadwheel facilities. The overview of results shows thatthe results of tests conducted in accordance with ISO and SAE standards on steel drums are very poorly correlated with more objective results of road tests. Significant differences occur both in the Coefficients of Rolling Resistance (CRR) and in the tire ranking. Only covering the drums with replicas of road surfaces leads to a significant improvement in the results obtained.For investigations of rolling resistance in non steady-state conditions, the flat track testing machine (TTF), equipped with asphalt cassettes, is shown to provide measurement data in agreement with the road test data.

Place, publisher, year, edition, pages
Seoul: Springer Nature , 2024.
Keywords [en]
Tires, Rolling resistance, Measuring methods, Tire labels, Road pavements
National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-346466DOI: 10.1007/s12239-024-00092-wISI: 001223429700001Scopus ID: 2-s2.0-85193410074OAI: oai:DiVA.org:kth-346466DiVA, id: diva2:1858147
Note

QC 20240527

Available from: 2024-05-15 Created: 2024-05-15 Last updated: 2024-05-27Bibliographically approved
In thesis
1. Rolling resistance at non-steady-state conditions - investigating the effect of tyre temperature
Open this publication in new window or tab >>Rolling resistance at non-steady-state conditions - investigating the effect of tyre temperature
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Road transport accounts for nearly a fifth of the global greenhouse gas emissions. Despite significant reductions, achieved by e.g. the introduction of electric vehicles, more can be done. One way is to reduce the rolling resistance, which is one of the resistive forces acting on a moving vehicle.

The overall goal of this work is to fill part of the knowledge gap regarding tyre rolling resistance to support the development of more energy efficient vehicles. Focus is on the influence of the operating conditions, with emphasis on tyre temperature and non-steady-state measurements. Today, rolling resistance of new tyres is rated to guide consumers to choose an energy-efficient tyre. However, this rating is based on standardised steady-state drum measurements at 25°C which often results in the measured rolling resistance being evaluated at higher operating temperature than during normal driving. To account for the drum’s curvature, Clark’s formula is used to convert the drum measurement to represent the tyre’s rolling resistance on a flat surface.

In this work, a new method for non-steady-state rolling resistance measurements on a flat surface has been developed and used to show that rolling resistance has a large and non-linear dependence on tyre temperature. This influence varied across the tested tyres, which indicates that the rolling resistance rating could be affected by the measurement temperature. It was shown that the influence of the tyre temperature on rolling resistance was more profound on a drum compared to a flat track. Therefore, it would be beneficial to include a temperature dependency in Clark’s formula to increase its accuracy.

Furthermore, a rolling resistance model has been developed to describe the relationship between tyre deformation and rolling resistance. The model is parametrised with measurement data and simple enough to be used in complete vehicle dynamic simulations.

Overall, this work has contributed with an increase of knowledge about rolling resistance and how it is influenced by tyre temperature, through the development and use of a new measurement method. The results can be used to improve range estimations and to develop more energy-efficient vehicles at realistic operating conditions. 

Abstract [sv]

Vägtransporter står för nästan en femtedel av de globala utsläppen av växthusgaser. En stor minskning har åstadkommits genom bl.a. introduktionen av elektriska fordon, men det räcker inte. Ett sätt är att minska rullmotståndet, som är en del av det färdmotstånd som verkar på ett fordon i rörelse. 

Det övergripande målet för den här avhandlingen är att fylla en del av kunskapsluckan om rullmotstånd för att bidra till utvecklingen av mer energieffektiva fordon. Fokus ligger på driftsvillkorens påverkan, framförallt däcktemperatur och icke-steady-state. Idag klassificeras däcks rullmotstånd för att hjälpa konsumenter att välja energieffektiva däck. Klassificeringen baseras dock på en standardiserad trumprovning under steady-state i 25°C, vilket ofta ger betydligt högre däcktemperatur än vid verkliga körförhållanden. För att ta hänsyn till trummans kurvatur används Clarks formel för att omvandla trummätningen till ett motsvarande rullmotstånd på en plan yta.

I detta arbete presenteras en ny metod för rullmotståndsmätningar vid icke-steady-state på plant underlag, vilken har utvecklats och använts för att påvisa att rullmotstånd har ett starkt och olinjärt beroende av däcktemperaturen. Däcktemperaturens inverkan på rullmotståndet varierade mellan de provade däcken, vilket indikerar att rullmotståndsklassificeringen kan påverkas av mättemperaturen. Vidare visades att däcktemperaturens påverkan på rullmotståndet är större på trumma jämfört med plant underlag. Därmed skulle det vara fördelaktigt att inkludera ett temperaturberoende i Clarks formel för att öka dess noggrannhet.

Vidare har en rullmotståndsmodell utvecklats som beskriver sambandet mellan rullmotstånd och däckdeformation. Modellen är parametriserad med mätdata och tillräckligt enkel för att användas i fordonsdynamiska simuleringar av ett komplett fordon.

Sammantaget har detta arbete bidragit med ökad kunskap om rullmotstånd och däcktemperaturens påverkan, genom utvecklande och användning av en ny mätmetod. Resultaten kan användas till att förbättra räckviddsuppskattningar och utveckla mer energieffektiva fordon vid realistiska driftsförhållanden. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 63
Series
TRITA-SCI-FOU ; 2024:31
Keywords
Tyres, rolling resistance, tyre temperature, operating conditions, rolling resistance measurement, drum measurements, non-steady-state, Clark’s formula, flat track measurements, trailer measurements, real driving conditions, brush model, parametrisation, Däck, rullmotstånd, däcktemperatur, driftsförhållanden, rullmotståndsmätning, trummätning, icke steady-state, Clarks formel, flat track-mätning, verkliga körförhållanden, borstmodellen, parametrisering
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-346470 (URN)978-91-8040-953-7 (ISBN)
Public defence
2024-06-10, Kollegiesalen, Brinellv. 6, https://kth-se.zoom.us/j/62030398715, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Vinnova, 2016-05195
Available from: 2024-05-16 Created: 2024-05-15 Last updated: 2024-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ydrefors, Lisa
By organisation
Vehicle DynamicsVinnExcellence Center for ECO2 Vehicle design
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf