kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A simplified model for the analysis of piled embankments considering arching and subsoil consolidation
The University of Tokyo.ORCID iD: 0000-0002-9937-3442
2022 (English)In: Geotextiles and Geomembranes, ISSN 0266-1144, E-ISSN 1879-3584, Vol. 50, no 3, p. 408-431Article in journal (Refereed) Published
Abstract [en]

n analytical model is presented for the design of geosynthetic-reinforced and pile-supported (GRPS) embankments in this paper. The originality of the proposed solution lies in the fact that it allows considering the influence of the subsoil consolidation on the soil arching and geosynthetic strain. A nonlinear function is implemented to describe the subsoil behavior with the consolidation process in a closed-form solution. A simplified approach is then presented to link the arching development with the subsoil consolidation. The arching theory is combined with the tensioned membrane theory and the soil-structure interaction mechanisms to provide a simple and suitable design approach that enables a realistic approximation for designing soil–geosynthetic systems. The analytical model is capable of performing an ultimate and serviceability limit state design of GRPS embankments. While current methods cannot fully address the important effects of the subsoil consolidation, the analytical results suggested that arching and differential settlements increase with an increase of the subsoil consolidation degree. The analytical model is compared to field measurements and five other design standards for several full-scale field tests to study its validity. The results showed a satisfactory agreement between the proposed model and measured data, and generally better results are obtained as compared with other design methods.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 50, no 3, p. 408-431
National Category
Geotechnical Engineering and Engineering Geology
Identifiers
URN: urn:nbn:se:kth:diva-349229DOI: 10.1016/j.geotexmem.2021.12.003ISI: 000776134600004Scopus ID: 2-s2.0-85122074899OAI: oai:DiVA.org:kth-349229DiVA, id: diva2:1880127
Note

QC 20240701

Available from: 2024-06-30 Created: 2024-06-30 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Pham, Tuan A.

Search in DiVA

By author/editor
Pham, Tuan A.
In the same journal
Geotextiles and Geomembranes
Geotechnical Engineering and Engineering Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf