Geosynthetic-reinforced and pile-supported (GRPS) embankments are becoming more and more popular as this technique showed good performances in practice. Various design methods were introduced to analyze GRPS embankments. However, the applicability of these design methods was not always fully validated. This paper focuses on the review of projects containing field observations of GRPS embankments. The comparison results showed that the assumptions related to the subsoil support, geosynthetic, arching shape, and its evolution are not consistent in the analytical methods. Comparison results with twenty-five full-scale cases and six series of experiments emphasize that these available design methods produce significantly different results in predicting loads transfer mechanism. The analytical models predict arching for cohesionless fill better that for cohesive fill soils. Besides, the analytical methods which consider subsoil support such as the CUR226 and EBGEO methods give results that are in a better agreement with experimental data as compared to other methods which do not consider the subsoil support. The CUR226 (2016) analytical model seems to be able to give the best performance with measured data when compared to other design methods. Finally, the results pointed out that the limit equilibrium model is adequate and has good performance.
QC 20240701