kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimum material ratio for improving the performance of cement-mixed soils
Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.ORCID iD: 0000-0002-9937-3442
2021 (English)In: Transportation Geotechnics, ISSN 2214-3912, Vol. 28, p. 100544-100544, article id 100544Article in journal (Refereed) Published
Abstract [en]

The cement-mixed soils technique is an efficient solution to improve the ground geomechanical properties in infrastructures and construction projects. This paper presents a systematic laboratory study to investigate the optimum water-to-cement ratio existence on the unconfined compressive strength. The soil compaction is controlled during these tests. The results showed that the maximum unconfined compressive strength was not only controlled by the porosity but also the water-to-cement ratio. The results indicated that the optimum range of water-to-cement ratio to mobilize the maximum strength is between 0.75 and 1.25 while the optimum water content is around 15%, and is quite stable for various cement content. Besides, the unconfined compressive strength decreased with increasing the water-to-cement ratio, and the reduction is more significant for higher cement contents. It seems that high cement content could be not sufficient for a large water-to-cement ratio. Finally, a new index, namely, the combined volume ratio is proposed for the strength analysis of cement-mixed soils. Using this index, the unconfined compressive strength of cement-mixed soils can be reasonably predicted. The combined volume ratio allows selecting the ratio of water and cement volume to ensure that the void volume is minimized, and the strength is therefore maximized.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 28, p. 100544-100544, article id 100544
National Category
Geotechnical Engineering and Engineering Geology
Identifiers
URN: urn:nbn:se:kth:diva-349236DOI: 10.1016/j.trgeo.2021.100544ISI: 000642463500001Scopus ID: 2-s2.0-85104064209OAI: oai:DiVA.org:kth-349236DiVA, id: diva2:1880136
Note

QC 20240701

Available from: 2024-06-30 Created: 2024-06-30 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Pham, Tuan A.

Search in DiVA

By author/editor
Pham, Tuan A.
Geotechnical Engineering and Engineering Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf