Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Stroke is a leading cause of long-term disability worldwide. Dropfoot gait, or inability to adequately lift, advance, and land on the foot on the more impaired side, is one of the most common gait impairments following a stroke, and often results in reduced mobility and increased fall risk, severely impacting independence and quality of life. Wearable robotics and exoskeletons have been widely explored for their potential in physical rehabilitation and mobility assistance for individuals with motor disorders. However, despite their promise, few existing systems have demonstrated convincing evidence for use. The specific exoskeleton performance challenges in assisting dropfoot gait that are addressed in this compilation thesis are 1) to simultaneously control both sagittal plane ankle dorsiflexion and frontal plane ankle inversion/eversion motions, and 2) to identify control strategies that are individualized based on gait impairments and subjective preferences.
Specifically, the aims of the thesis were to design an ankle exoskeleton that is capable of providing biplanar assistance and meets both biomechanical and feasibility requirements, to develop a customized control framework that optimizes multiple performance metrics, and to identify subject-specific assistive parameters that improve gait metrics while aligning with users' subjective assessments as well.
The first two studies focus on the development and feasibility of a soft ankle exoskeleton designed to provide assistance in both ankle dorsiflexion and eversion, via cable-driven mechanisms and compliant materials. Initial testing confirmed the exoskeleton's ability to effectively guide ankle joint motion in both planes with minimal resistance. In the second study, the device's feasibility was evaluated in a pilot group of persons with dropfoot gait following a stroke. Improvements in key gait parameters, along with positive user assessment on the device's comfort, usability, and perceived effectiveness, encourage further application of the device in persons in a chronic post-stroke phase.
The third and fourth studies focus on developing personalized exoskeleton control strategies, specifically a multi-objective human-in-the-loop optimization framework that evaluates individual responses to various assistive profiles, then identifies assistive profiles tailored to each individual's gait impairments. The framework was constructed to simultaneously optimize two objectives that describe gait quality. This approach yielded not just one, but a group of good solutions that improve both gait metrics to varying degrees, among which solutions can be selected based on context and preference. The framework was developed and tested on a group of non-disabled subjects with a simulated dropfoot impairment in the third study and on a pilot group of persons with dropfoot following a stroke in the fourth study. In the fourth study, the personalization framework was further advanced by incorporating user preferences, thereby incorporating both objective gait quality metrics and subjective preference in identifying optimal exoskeleton assistance.
This thesis advances the application of exoskeletons for individuals post-stroke by addressing both hardware design and personalized control strategies. The findings highlight the potential of the developed ankle exoskeleton to enhance mobility in this population and underscore the importance of individualized assistance to meet diverse user needs. Together, the exoskeleton design and individualized control framework offer a valuable foundation for future research and practical implementation of assistive technologies.
Abstract [sv]
Stroke är en ledande orsak till långvarig funktionsnedsättning globalt. Droppfot vid gång, eller nedsatt förmåga att lyfta, flytta fram och placera den påverkade foten på ett adekvat sätt är vanligt efter stroke. Droppfot vid gång är ofta förknippad med nedsatt förflyttningsförmåga och ökad fallrisk, samt minskad självständighet och livskvalitet. Potentialen hos bärbar robotik och exoskelett inom rehabilitering och assistans för personer med motoriska funktionsnedsättningar har undersökts brett. Få befintliga system har dock visat övertygande bevis för sin praktiska användning. Denna avhandling fokuserar på två specifika utmaningar i utformningen av ett exoskelettet för assistans vid droppfot under gång: 1) att kontrollera fotens position i både sagittala och frontala plan samtidigt, och 2) att individualisera exoskelettets assistans för att förbättra både objektiva mått och subjektiv upplevelse.
Syften med avhandlingen är således att utveckla ett exoskelett som kan ge biplanär assistans runt fotleden som uppfyller både biomekaniska och genomförbarhetskrav, att utveckla ett skräddarsytt kontrollramverk som optimerar flera prestationsmått, och att identifiera individuellt anpassad assistans som förbättrar gång och uppfyller subjektiva kriterier.
De två första studierna fokuserar på utvecklingen och genomförbarhet av ett mjukt fotledsexoskelett utformat för att ge assistans vid både dorsalflektion och eversion, via kabeldriven mekanik och följsamma material. Experiment i den första studien bekräftar exoskelettets förmåga att kontrollera fotledsrörelser i båda planen med minimalt motstånd. I den andra studien utvärderades genomförbarheten av exoskelettet i en pilotgrupp av personer med droppfot vid gång i kronisk fas efter stroke. Vi fann förbättringar av viktiga gångparametrar, tillsammans med en positiv användarbedömning av komfort, användbarhet och upplevd effektivitet, vilket ytterligare uppmuntrar tillämpningen för personer i en kronisk fas efter stroke.
Den tredje och fjärde studien fokuserar på att utveckla personliga strategier för exoskelettkontroll, specifikt en multi-objektiv human-in-the-loop optimeringsramverk som utvärderar individuella svar på olika assistansprofiler, och sedan identifierar assistansprofiler skräddarsydda för varje individs gångavvikelse. Ramverket konstruerades för att samtidigt optimera två aspekter av gångkvalitet. Detta tillvägagångssätt gav inte bara en, utan en grupp av bra lösningar vilka förbättrar båda gångparametrarna i varierande grad vilka kan väljas baserat på sammanhang och preferenser. Ramverket utvecklades och testades i den tredje studien på en grupp försökspersoner utan gångavvikelser med en simulerad droppfotsnedsättning och i den fjärde studien på en pilotgrupp av personer med droppfot efter stroke. I den fjärde studien utvecklades individualiseringsramverket ytterligare genom att ta hänsyn till användarpreferenser, och därigenom identifiera den optimala assistansen utifrån både objektiva gångkvalitetsmått och subjektiva preferenser.
Denna avhandling främjar tillämpningen av exoskelett för individer efter stroke genom både hårdvarudesign och individualiserade kontrollstrategier. Våra resultat stöder utvecklingen av exoskelett för att förbättra förflyttningsförmågan i denna population och belyser vikten av individualiserad assistans för att möta olika användarbehov. Våra resultat och utvecklingen ger en värdefull grund för framtida forskning och praktisk implementering av assisterande hjälpmedel vid gång.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 77
Series
TRITA-SCI-FOU ; 2025:16
National Category
Robotics and automation Human Computer Interaction
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-363232 (URN)978-91-8106-242-7 (ISBN)
Public defence
2025-05-26, F3(Flodis), Lindstedtsvägen 26 & 28, floor 2, Stockholm, 09:00 (English)
Opponent
Supervisors
Note
QC 250508
2025-05-082025-05-082025-05-08Bibliographically approved