kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Soft ankle exoskeleton to counteract dropfoot and excessive inversion
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Aerospace, moveability and naval architecture. (Promobilia MoveAbility Lab)ORCID iD: 0009-0001-4357-7876
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Aerospace, moveability and naval architecture. (Promobilia MoveAbility Lab)ORCID iD: 0000-0002-4679-2934
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Aerospace, moveability and naval architecture. (Promobilia MoveAbility Lab)ORCID iD: 0000-0002-2232-5258
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Aerospace, moveability and naval architecture. Karolinska Inst, Dept Womens & Childrens Hlth, Stockholm, Sweden. (Promobilia MoveAbility Lab)ORCID iD: 0000-0001-5417-5939
2024 (English)In: Frontiers in Neurorobotics, ISSN 1662-5218, Vol. 18, article id 1372763Article in journal (Refereed) Published
Abstract [en]

Introduction Wearable exoskeletons are emerging technologies for providing movement assistance and rehabilitation for people with motor disorders. In this study, we focus on the specific gait pathology dropfoot, which is common after a stroke. Dropfoot makes it difficult to achieve foot clearance during swing and heel contact at early stance and often necessitates compensatory movements. Methods We developed a soft ankle exoskeleton consisting of actuation and transmission systems to assist two degrees of freedom simultaneously: dorsiflexion and eversion, then performed several proof-of-concept experiments on non-disabled persons. The actuation system consists of two motors worn on a waist belt. The transmission system provides assistive force to the medial and lateral sides of the forefoot via Bowden cables. The coupling design enables variable assistance of dorsiflexion and inversion at the same time, and a force-free controller is proposed to compensate for device resistance. We first evaluated the performance of the exoskeleton in three seated movement tests: assisting dorsiflexion and eversion, controlling plantarflexion, and compensating for device resistance, then during walking tests. In all proof-of-concept experiments, dropfoot tendency was simulated by fastening a weight to the shoe over the lateral forefoot. Results In the first two seated tests, errors between the target and the achieved ankle joint angles in two planes were low; errors of <1.5 degrees were achieved in assisting dorsiflexion and/or controlling plantarflexion and of <1.4 degrees in assisting ankle eversion. The force-free controller in test three significantly compensated for the device resistance during ankle joint plantarflexion. In the gait tests, the exoskeleton was able to normalize ankle joint and foot segment kinematics, specifically foot inclination angle and ankle inversion angle at initial contact and ankle angle and clearance height during swing. Discussion Our findings support the feasibility of the new ankle exoskeleton design in assisting two degrees of freedom at the ankle simultaneously and show its potential to assist people with dropfoot and excessive inversion.

Place, publisher, year, edition, pages
Frontiers Media SA , 2024. Vol. 18, article id 1372763
Keywords [en]
assistive device, biomechanics, gait impairment, gait analysis, soft robotics
National Category
Physiotherapy Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-353000DOI: 10.3389/fnbot.2024.1372763ISI: 001304932800001PubMedID: 39234442Scopus ID: 2-s2.0-85203189202OAI: oai:DiVA.org:kth-353000DiVA, id: diva2:1897309
Note

QC 20240912

Available from: 2024-09-12 Created: 2024-09-12 Last updated: 2025-05-08Bibliographically approved
In thesis
1. Advancing Exoskeleton Use Post Stroke: Developing and Optimizing a Soft Biplanar Ankle Exoskeleton
Open this publication in new window or tab >>Advancing Exoskeleton Use Post Stroke: Developing and Optimizing a Soft Biplanar Ankle Exoskeleton
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Stroke is a leading cause of long-term disability worldwide. Dropfoot gait, or inability to adequately lift, advance, and land on the foot on the more impaired side, is one of the most common gait impairments following a stroke, and often results in reduced mobility and increased fall risk, severely impacting independence and quality of life. Wearable robotics and exoskeletons have been widely explored for their potential in physical rehabilitation and mobility assistance for individuals with motor disorders. However, despite their promise, few existing systems have demonstrated convincing evidence for use. The specific exoskeleton performance challenges in assisting dropfoot gait that are addressed in this compilation thesis are 1) to simultaneously control both sagittal plane ankle dorsiflexion and frontal plane ankle inversion/eversion motions, and 2) to identify control strategies that are individualized based on gait impairments and subjective preferences. 

Specifically, the aims of the thesis were to design an ankle exoskeleton that is capable of providing biplanar assistance and meets both biomechanical and feasibility requirements, to develop a customized control framework that optimizes multiple performance metrics, and to identify subject-specific assistive parameters that improve gait metrics while aligning with users' subjective assessments as well.

The first two studies focus on the development and feasibility of a soft ankle exoskeleton designed to provide  assistance in both ankle dorsiflexion and eversion, via  cable-driven mechanisms and compliant materials. Initial testing confirmed the exoskeleton's ability to effectively guide ankle joint motion in both planes with minimal resistance. In the second study, the device's feasibility was evaluated in a pilot group of persons with dropfoot gait following a stroke. Improvements in key gait parameters, along with positive user assessment on the device's comfort, usability, and perceived effectiveness, encourage further application of the device in persons in a chronic post-stroke phase.

The third and fourth studies focus on developing personalized exoskeleton control strategies, specifically a multi-objective human-in-the-loop optimization framework that evaluates individual responses to various assistive profiles, then identifies assistive profiles tailored to each individual's gait impairments. The framework was constructed to simultaneously optimize two objectives that describe gait quality. This approach yielded not just one, but a group of good solutions that improve both gait metrics to varying degrees, among which solutions can be selected based on context and preference. The framework was developed and tested on a group of non-disabled subjects with a simulated dropfoot impairment in the third study and on a pilot group of persons with dropfoot following a stroke in the fourth study. In the fourth study, the personalization framework was further advanced by incorporating user preferences, thereby incorporating both objective gait quality metrics and subjective preference in identifying optimal exoskeleton assistance.

This thesis advances the application of exoskeletons for individuals post-stroke by addressing both hardware design and personalized control strategies. The findings highlight the potential of the developed ankle exoskeleton to enhance mobility in this population and underscore the importance of individualized assistance to meet diverse user needs. Together, the exoskeleton design and individualized control framework offer a valuable foundation for future research and practical implementation of assistive technologies.

Abstract [sv]

Stroke är en ledande orsak till långvarig funktionsnedsättning globalt. Droppfot vid gång, eller nedsatt förmåga att lyfta, flytta fram och placera den påverkade foten på ett adekvat sätt är vanligt efter stroke. Droppfot vid gång är ofta förknippad med nedsatt förflyttningsförmåga och ökad fallrisk, samt minskad självständighet och livskvalitet. Potentialen hos bärbar robotik och exoskelett inom rehabilitering och assistans för personer med motoriska funktionsnedsättningar har undersökts brett. Få befintliga system har dock visat övertygande bevis för sin praktiska användning. Denna avhandling fokuserar på två specifika utmaningar i utformningen av ett exoskelettet för assistans vid droppfot under gång: 1) att kontrollera fotens position i både sagittala och frontala plan samtidigt, och 2) att individualisera exoskelettets  assistans för att förbättra både objektiva mått och subjektiv upplevelse.

Syften med avhandlingen är således att utveckla ett exoskelett som kan ge biplanär assistans runt fotleden som uppfyller både biomekaniska och genomförbarhetskrav, att utveckla ett skräddarsytt kontrollramverk som optimerar flera prestationsmått, och att identifiera individuellt anpassad assistans som förbättrar gång och uppfyller subjektiva kriterier.

De två första studierna fokuserar på utvecklingen och genomförbarhet av ett mjukt fotledsexoskelett utformat för att ge assistans vid både dorsalflektion och eversion, via kabeldriven mekanik och följsamma material. Experiment i den första studien bekräftar exoskelettets förmåga att kontrollera fotledsrörelser i båda planen med minimalt motstånd. I den andra studien utvärderades genomförbarheten av exoskelettet i en pilotgrupp av personer med droppfot vid gång i kronisk fas efter stroke. Vi fann förbättringar av viktiga gångparametrar, tillsammans med en positiv användarbedömning av komfort, användbarhet och upplevd effektivitet, vilket ytterligare uppmuntrar tillämpningen för personer i en kronisk fas efter stroke.

Den tredje och fjärde studien fokuserar på att utveckla personliga strategier för exoskelettkontroll, specifikt en multi-objektiv human-in-the-loop optimeringsramverk som utvärderar individuella svar på olika assistansprofiler, och sedan identifierar assistansprofiler skräddarsydda för varje individs gångavvikelse. Ramverket konstruerades för att samtidigt optimera två aspekter av gångkvalitet. Detta tillvägagångssätt gav inte bara en, utan en grupp av bra lösningar vilka förbättrar båda gångparametrarna i varierande grad vilka kan väljas baserat på sammanhang och preferenser. Ramverket utvecklades och testades i den tredje studien på en grupp försökspersoner utan gångavvikelser med en simulerad droppfotsnedsättning och  i den fjärde studien på en pilotgrupp av personer med droppfot efter stroke. I den fjärde studien utvecklades individualiseringsramverket ytterligare genom att ta hänsyn till användarpreferenser, och därigenom identifiera den optimala assistansen utifrån både objektiva gångkvalitetsmått och subjektiva preferenser.

Denna avhandling främjar tillämpningen av exoskelett för individer efter stroke genom både hårdvarudesign och individualiserade kontrollstrategier. Våra resultat stöder utvecklingen av exoskelett för att förbättra förflyttningsförmågan i denna population och belyser vikten av individualiserad assistans för att möta olika användarbehov. Våra resultat och utvecklingen ger en värdefull grund för framtida forskning och praktisk implementering av assisterande hjälpmedel vid gång. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 77
Series
TRITA-SCI-FOU ; 2025:16
National Category
Robotics and automation Human Computer Interaction
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-363232 (URN)978-91-8106-242-7 (ISBN)
Public defence
2025-05-26, F3(Flodis), Lindstedtsvägen 26 & 28, floor 2, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 250508

Available from: 2025-05-08 Created: 2025-05-08 Last updated: 2025-05-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Zhang, XiaochenLiu, YixingWang, RuoliGutierrez-Farewik, Elena

Search in DiVA

By author/editor
Zhang, XiaochenLiu, YixingWang, RuoliGutierrez-Farewik, Elena
By organisation
Aerospace, moveability and naval architecture
In the same journal
Frontiers in Neurorobotics
PhysiotherapyMechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 84 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf