kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
D-algebraic functions
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany, Inselstraße 22; CNRS, IRIF, Université Paris Cité, 8 Pl. Aurélie Nemours, 75013 Paris, France, 8 Pl. Aurélie Nemours.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.). Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany, Inselstraße 22.ORCID iD: 0000-0002-2308-4070
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany, Inselstraße 22; Department of Computer Science, Wolfson Building, Parks Road, Oxford OX1 3QD, UK, Wolfson Building, Parks Road.
2025 (English)In: Journal of symbolic computation, ISSN 0747-7171, E-ISSN 1095-855X, Vol. 128, article id 102377Article in journal (Refereed) Published
Abstract [en]

Differentially-algebraic (D-algebraic) functions are solutions of polynomial equations in the function, its derivatives, and the independent variables. We revisit closure properties of these functions by providing constructive proofs. We present algorithms to compute algebraic differential equations for compositions and arithmetic manipulations of univariate D-algebraic functions and derive bounds for the order of the resulting differential equations. We apply our methods to examples in the sciences.

Place, publisher, year, edition, pages
Academic Press , 2025. Vol. 128, article id 102377
Keywords [en]
Algebraic differential equations, Differential algebra
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-353449DOI: 10.1016/j.jsc.2024.102377ISI: 001309548900001Scopus ID: 2-s2.0-85203152864OAI: oai:DiVA.org:kth-353449DiVA, id: diva2:1899124
Note

QC 20240925

Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2024-09-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sattelberger, Anna-Laura

Search in DiVA

By author/editor
Sattelberger, Anna-Laura
By organisation
Mathematics (Dept.)
In the same journal
Journal of symbolic computation
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf