Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This thesis investigates the development and characterization of advanced materials derived from renewable sources, with a focus on cellulose nanofibrils (CNFs), lignocellulose nanofibrils (LCNFs), and protein nanofibrils (PNFs). The research aims to understand the intricate dynamics and interactions at the nano-scale, which are essential for enhancing the mechanical properties, sustainability, and practical applications of these materials.
The study begins with the exploration of CNFs in the presence of Helux, a dendritic polyampholyte. By examining the spinnability, alignment, and mechanical properties of CNF-composite filaments, the research demonstrates how Helux influences the assembly process. While Helux reduces fibril alignment due to increased rotary diffusion, it simultaneously creates a robust 3D network through ionic interactions, resulting in a trade-off that enhances the toughness and strength of the filaments.
The work then extends to LCNFs derived from unbleached softwood kraft pulps with varying lignin content. Lignin adds complexity to the alignment and mechanical properties of LCNFs, acting as a natural adhesive that enhances interfibrillar interactions. The study shows that LCNF-filaments exhibit higher tensile strength and modulus compared to CNF-filaments, particularly when lignin content is optimized. Additionally, LCNF-based foams are evaluated for their mechanical properties and lower cumulative energy demand, highlighting their potential for sustainable material applications.
In the final section, the thesis examines PNFs, focusing on how their morphology affects alignment and assembly under different flow conditions. Using microfluidic techniques and in situ small-angle X-ray scattering (SAXS), the research reveals the significant role of nanofibril morphology in forming hierarchical structures. The study also explores the use of genipin as a cross-linker to enhance the mechanical properties of PNF-based microfibers, demonstrating how cross-linking can improve fiber strength and ductility.
This thesis advances the field of sustainable material development by offering insights into the factors that influence the alignment, assembly, and mechanical performance of nanofibril-based materials, contributing to the creation of high-performance, environmentally friendly materials.
Abstract [sv]
I denna avhandling presenteras utveckling och karakterisering av avancerade material baserade på förnyelsebara råvaror, framför allt cellulosananofibriller (CNF), lignocellulosananofibriller (LCNF) och proteinnanofibriller (PNF). Arbetets syfte är att förstå den komplicerade dynamik och interaktion på nano-skala som styr både de mekaniska egenskaperna och avancerade funktioner hos de skapade materialen.
Studien börjar med en undersökning av CNF i närvaro av Helux, en dendritisk polyamfolyt. Genom att undersöka spinnbarhet, fibrillorientering och mekaniska egenskaper hos CNF-kompositfilament utreds hur Helux påverkar sammansättningsprocessen. Närvaron av Helux minskar fibrillernas upplinjering på grund av ökad rotationsdiffusion, men skapar samtidigt ett robust 3D-nätverk genom joniska interaktioner. Detta resulterar i en komplex avvägning mellan dessa två effekter, vilka leder till minskad respektive ökad styvhet.
Arbetet utvidgas sedan till LCNF från ofullständigt blekt barrträds-(pappers)massa med varierande lignininnehåll. Precis som Helux påverkar upplinjeringen och de mekaniska egenskaperna hos filament skapade av LCNF, där ligninet fungerar som ett naturligt bindemedel som förbättrar interfibrillära interaktioner. Studien visar att LCNF-filament uppvisar högre brottstyrka och styvhet jämfört med CNF-filament, särskilt när lignininnehållet är optimerat. Utöver filament görs skum från LCNF. Dessa utvärderas med avseende på mekaniska egenskaper och kumulativt energibehov. Dessa skum visar stor potential som ett hållbart alternativ till fossilbaserade skum.
I den sista delen av avhandlingen undersöks PNF, speciellt hur deras morfologi påverkar upplinjering och materialsyntes under olika flödesförhållanden. Med hjälp av mikrofluidiktekniker och in situ röntgenspridning undersöks hur nanofibrillmorfologi påverkar uppkomsten av hierarkiska materialstrukturer. Studien utforskar också användningen av genipin som tvärbindare för att förbättra de mekaniska egenskaperna hos PNF-baserade mikrofilament. Det demonstreras att tvärbindning kan förbättra fiberstyrka och duktilitet.
Sammanfattningsvis bidrar denna avhandling till utvecklingen av högpresterande hållbara material genom ny förståelse vad gäller upplinjering, syntes och mekaniska prestanda hos nanofibrillbaserade material och bidrar till skapandet av högpresterande, miljövänliga material.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:45
Keywords
Bio-nanofibers, alignment, material properties, small angle x-ray scattering, sustainability, Bio-nanofibrer, upplinjering, materialegenskaper, in situ röntgenspridning, hållbarhet
National Category
Fluid Mechanics Paper, Pulp and Fiber Technology Other Physics Topics
Research subject
Engineering Mechanics; Fibre and Polymer Science; Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-354252 (URN)978-91-8106-049-2 (ISBN)
Public defence
2024-10-25, https://kth-se.zoom.us/j/65482520360, F2, Lindstedtsvägen 26 & 28, Stockholm, 10:15 (English)
Opponent
Supervisors
Note
QC 241002
2024-10-022024-10-022025-02-05Bibliographically approved