kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deconstructing the Retained Austenite Stability: In Situ Observations on the Austenite Stability in One- and Two-Phase Bulk Microstructures During Uniaxial Tensile Tests
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0001-9512-1881
Univ.Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, 59000, Lille, France.
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India.
Cornell High Energy Synchrotron Source, Ithaca, NY, 14853, USA.
Show others and affiliations
2024 (English)In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 55, no 11, p. 4600-4612Article in journal (Refereed) Published
Abstract [en]

Given the critical role that metastable retained austenite (RA) plays in advanced high-strength steel (AHSS), there is significant interest in obtaining a comprehensive understanding of its stability, to achieve excellent mechanical properties. Despite considerable attention and numerous studies, the significance of individual contributions of various microstructural factors (size, crystallographic orientation, surrounding phases, etc.) on the stability of RA remain unclear, partly due to the difficulty of isolating the direct effects of these factors. In this study, we examined the influence of microstructural factors while minimizing the effect of chemical composition on the mechanical stability of RA. We accomplished this by comparing the austenite (γ) stability in two distinct microstructures: a two-phase RA/martensite microstructure and a one-phase γ microstructure, both with nearly identical γ compositions. We employed in situ high-energy X-ray diffraction during uniaxial tensile testing conducted at both room temperature and 100 °C, facilitating the continuous monitoring of microstructural changes during the deformation process. By establishing a direct correlation between the macroscopic tensile load, phase load partitioning, and the γ/RA transformation, we aimed to understand the significance of the microstructural factors on the mechanical stability of the RA. The results indicate that very fine RA size and the surrounding hard martensitic matrix (aside from contributing to load partitioning) contribute less significantly to RA stability during deformation than expected. The findings of this study emphasize the critical and distinct influence of microstructure on γ/RA stability.

Place, publisher, year, edition, pages
Springer Nature , 2024. Vol. 55, no 11, p. 4600-4612
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-355211DOI: 10.1007/s11661-024-07569-4ISI: 001310693300001Scopus ID: 2-s2.0-85203708593OAI: oai:DiVA.org:kth-355211DiVA, id: diva2:1907829
Note

QC 20241025

Available from: 2024-10-23 Created: 2024-10-23 Last updated: 2024-11-18Bibliographically approved
In thesis
1. Microstructural Influences on Retained Austenite Stability in High Strength Steels and Kinetics of Lath Martensite Formation in Fe and Fe Alloys
Open this publication in new window or tab >>Microstructural Influences on Retained Austenite Stability in High Strength Steels and Kinetics of Lath Martensite Formation in Fe and Fe Alloys
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The stability of retained austenite (RA) is a critical factor for enhancing the mechanical performance of advanced high-strength steels. This study experimentally investigated the influence of microstructural factors on RA stability, isolating them from the influence of chemical composition. This is done through a comparative analysis of two-phase (RA/martensite) and one-phase (austenite) microstructures with nearly identical austenite compositions in medium-Mn steels. This approach enabled a focused examination of microstructural factors influencing austenite stability without the influence of composition. The experimental results were further correlated with a thermodynamic Ms model to determine the significance of different microstructural factors.

A major part of this thesis is dedicated to understanding microstructural factors and their influence on austenite stability. A range of characterization techniques were employed. (1) Scanning electron microscopy (SEM) coupled with electron backscatter diffraction (EBSD) was used to characterize the apparent microstructure. (2) Dilatometry and X-ray diffraction (XRD) were used to assess austenite stability during cooling, and (3) In-situ high-energy X-ray diffraction tensile test was used to assess austenite stability during deformation. The results showed distinct microstructure effects on the thermal and mechanical stabilities of RA, signifying the importance of the microstructural effects on γ/RA stability. 

In addition, another part of this thesis explored the kinetics of lath martensite formation in Fe and Fe alloys based on ultra-rapid cooling experiments. These experiments provided rare isothermal information on the transformation, indicating that substitutional alloying elements such as Cr, Ni, and Ru have small effects on the rate of lath martensite formation, in contrast to the behavior observed for interstitial C. A mathematical model based on the Arrhenius equation was developed to predict the rate and temperature dependence of lath martensite formation in Fe-C alloys.

Abstract [sv]

Stabiliteten hos restaustenit (RA) är en kritisk faktor för att förbättra den mekaniska prestandan hos avancerade höghållfasta stål. Denna studie undersökte experimentellt påverkan av mikrostrukturella faktorer på RA-stabiliteten, och isolerade dem från effekterna av kemisk sammansättning. Detta görs genom en jämförande analys av tvåfasiga (RA/martensit) och enfasiga (austenit) mikrostrukturer med nästan identiska austenitsammansättningar i medel-Mn stål. Detta tillvägagångssätt möjliggjorde en fokuserad undersökning av mikrostrukturella faktorer som påverkar austenitstabiliteten utan påverkan av sammansättning. De experimentella resultaten korrelerades ytterligare med en termodynamisk Ms-modell för att bestämma betydelsen av olika mikrostrukturella faktorer.

En stor del av denna avhandling är tillägnad förståelsen av mikrostrukturella faktorer och deras inverkan på austenitstabilitet. En rad tekniker användes. (1) Svepelektronmikroskopi (SEM) kopplad med elektronbackscatter-diffraktion (EBSD) användes för att karakterisera mikrostrukturen. (2) Dilatometri och röntgendiffraktion (XRD) användes för att bedöma austenitstabilitet under kylning, och (3) In-situ högenergiröntgendiffraktionsdragtest användes för att bedöma austenitstabilitet under deformation. Resultaten visade distinkta mikrostruktureffekter på den termiska och mekaniska stabiliteten hos RA, vilket indikerar vikten av de mikrostrukturella effekterna på γ/RA-stabiliteten.

Dessutom har kinetiken för lattmartensitbildning i Fe och Fe-legeringar baserat på ultrasnabba kylningsexperiment undersökts. Dessa experiment ger sällsynt isotermisk information om martensitbildning, och tyder på att substitutionella legeringselement så som Cr, Ni och Ru har små effekter på bildnings hastigheten av lattmartensit, i motsats till det komplexa beteende som observerats för interstitiellt C. En matematisk modell baserad på Arrhenius-ekvationen utvecklades för att förutsäga hastigheten och temperaturberoendet av bildining av lattmartensit i Fe-C-legeringar.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2024. p. 126
Series
TRITA-ITM-AVL ; 2024:28
Keywords
Medium Mn Steel, Austenite stability, Martensitic transformation, In Situ High Energy Diffraction, Ultra Rapid Cooling, Medium Mn Stål, Austenitstabilitet, Martensitisk omvandling, In-situ högenergiröntgendiffraktions, Ultrasnabba kylningsexperiment
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-356530 (URN)978-91-8106-137-6 (ISBN)
Public defence
2024-12-13, Sal M3 / https://kth-se.zoom.us/j/69068902394, Brinellvägen 64 A, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2024-11-20 Created: 2024-11-16 Last updated: 2024-12-06Bibliographically approved

Open Access in DiVA

fulltext(1723 kB)88 downloads
File information
File name FULLTEXT01.pdfFile size 1723 kBChecksum SHA-512
afaa3e7027f8c06cd3ecc24183dba3ec1a3c0a8a88c15d7902b1df21c96699afe5b93a69ce1c5b8ee06e5f57224a22280474d7c3eb4615c7d335c7ed3a00b9cc
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Kumpati, JoshuaHedström, PeterBorgenstam, Annika

Search in DiVA

By author/editor
Kumpati, JoshuaHedström, PeterBorgenstam, Annika
By organisation
Materials Science and EngineeringPropertiesStructures
In the same journal
Metallurgical and Materials Transactions. A
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 89 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 215 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf