kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Radiofrequency absorption of coated ellipsoidal gold nanoparticles in human tissue
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0001-5396-141x
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0003-0369-7520
2024 (English)In: Nanoscale Advances, E-ISSN 2516-0230, Vol. 6, no 7, p. 1880-1891Article in journal (Refereed) Published
Abstract [en]

Electromagnetic radiofrequency heating of gold nanoparticles for use in remote hyperthermia cancer treatment has seen rapidly growing interest in the last decade. While most of the focus has been on studying spherical nanoparticles, recent research suggests that using ellipsoidal particles can significantly increase the Joule heating. However, it is still unclear how the presence of ligands affects the electromagnetic absorption in this context. In the present paper, we study the effects of adding a surface coating to ellipsoidal gold nanoparticles, and investigate the change in absorption with respect to coating properties, particle aspect-ratio, and frequency. Both the case of a single nanoparticle and the case of a suspension of nanoparticles are studied. The introduction of a dielectric coating increases the absorption rate for particles with lower aspect ratios and at lower frequencies, potentially improving the flexibility of parameter configurations that can be used in treatment. A thermal analysis reveals that the absorption in the parameter space of lower aspect ratios translate to negligible differential temperature increase, even with the addition of coating. Furthermore, nanoparticles with very large aspect ratios (nanowires) generate less heat with coating compared to no coating. Thus, it is shown that the presence of coating and choice of aspect ratio, have significant impact on the absorption response and must be accounted for in the analysis of ligand-capped nanoparticles. The findings in the present paper provide a valuable tool to optimize the coated gold nanoparticle design parameters, in order to secure clinically useful differential heating.

Place, publisher, year, edition, pages
UK: Royal Society of Chemistry, 2024. Vol. 6, no 7, p. 1880-1891
Keywords [en]
cancer therapy, hyperthermia, gold nanoparticles, radiofrequency, scattering theory
National Category
Nano Technology Biomaterials Science Other Electrical Engineering, Electronic Engineering, Information Engineering Atom and Molecular Physics and Optics
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-356995DOI: 10.1039/d3na00876bISI: 001153432900001Scopus ID: 2-s2.0-85183500918OAI: oai:DiVA.org:kth-356995DiVA, id: diva2:1916852
Funder
Swedish Research Council, 2018-05001
Note

QC 20241129

Available from: 2024-11-28 Created: 2024-11-28 Last updated: 2024-11-29Bibliographically approved
In thesis
1. Radiofrequency heating of gold nanoparticles for medical applications
Open this publication in new window or tab >>Radiofrequency heating of gold nanoparticles for medical applications
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, the electromagnetic radiofrequency (RF) heating of gold nanoparticles (AuNPs) is investigated by means of analytical and numerical methods. The aim is to establish methods to identify model parameters for AuNP-mediated RF heating of biological tissue. These investigations can ultimately be used to assess the feasibility of a non-invasive and targeted method of cancer therapy by hyperthermia.

As a first step, an analytical model is developed, as a tool to study the absorption in a thin AuNP-treated cell substrate inserted in a waveguide. The interior of the waveguide is modeled as a continuous material composite with graded transition between the AuNP-treated layer and its surroundings. Exact analytical solutions for the fields, and the transmission and absorption parameters are obtained. The introduction of a scaling factor allows the calculation of the absorption within the AuNP-treated layer only, thus excluding losses in the surrounding material. Dispersive dielectric models describing the electromagnetic properties of relevant tissues are discussed and applied in numerical examples. The waveguide structure is numerically simulated in COMSOL Multiphysics, confirming the validity of analytical results.

The physical mechanisms that enable the heating of AuNPs by RF irradiation are not entirely understood. This thesis studies two proposed mechanisms and evaluates under what conditions they can amount to the required heating of the targeted tissue: electrophoretic oscillation and Joule heating. These effects are studied using electrostatic scattering theory.

RF Joule heating is found to be negligible in spherical AuNPs, but deemed possible in long nanowires. It is of particular interest to study how the presence of a thin dielectric shell affects the heating capacity in ellipsoidal AuNPs. In the context of the medical application, AuNPs are coated with functionalized ligands for tumor targeting. The Joule heating of coated AuNPs submerged in tissue is thus studied with respect to coating properties for AuNPs of all nanoscale-sized spheroidal shapes. The coating is found to strongly affect the overall AuNP heat absorption, and the effect is heavily dependent on the electromagnetic and spatial properties of the coating. The type of ligands to be used in practical applications should therefore be evaluated based on these properties, in addition to its targeting efficacy and biocompatibility.

Finally, the electrophoretic heating of AuNP suspensions is investigated. In the literature, this mechanism has been evaluated only for spherical AuNPs and mostly when they are submerged in aqueous solutions. Here, the electrophoretic heating is studied for any spheroidal shape in all nanoscale sizes. Heating is found to be strongest for spherical AuNPs a few nanometers in size dispersed in water, but significant heating is also observed in nanorods up to 40 nm in length and nanodisks with diameters up to 10 nm. However, the potency of the effect is strongly affected by the solvent. Due to the high viscosity in tissues, and in particular cancerous tissues, the study suggests that electrophoretic heating of AuNPs is negligible in these media. 

Abstract [sv]

I denna avhandling studeras elektromagnetisk radiofrekvensuppvärmning av guldnanopartiklar (AuNPs) med hjälp av analytiska och numeriska metoder. Syftet är att etablera metoder för att identifiera modellparametrar för AuNP-medierad radiofrekvensuppvärmning av biologisk vävnad. Dessa undersökningar kan i slutändan användas för att bedöma genomförbarheten av en icke-invasiv metod för cancerterapi genom riktad hypertermi.

Som ett första steg utvecklas en analytisk modell för att studera absorptionen i ett tunt AuNP-behandlat cellsubstrat insatt i en vågledare. Vågledaren med det insatta cellsubstratet modelleras som en kontinuerlig materialkomposit med graderad övergång mellan det AuNP-behandlade lagret och dess omgivning. Exakta analytiska lösningar för fälten, samt för transmissions- och absorptionsparametrar för vågledaren erhålls. Införandet av en skalningsfaktor möjliggör beräkning av absorptionen endast inom det AuNP-behandlade lagret, vilket utesluter förluster i det omgivande materialet. Dispersiva dielektriska modeller, som beskriver de elektromagnetiska egenskaperna hos relevanta vävnader, diskuteras och tillämpas i numeriska exempel. Vågledaren simuleras numeriskt i COMSOL Multiphysics, vilket bekräftar giltigheten av de analytiska resultaten.

De fysikaliska mekanismerna som möjliggör uppvärmning av AuNP genom radiofrekvent strålning är inte helt klarlagda. Denna avhandling studerar två föreslagna mekanismer, och utvärderar under vilka förhållanden de kan uppnå den erforderliga uppvärmningen: elektroforetisk oscillation och Joule-uppvärmning. Studeras med hjälp av elektrostatisk spridningsteori.

Radiofrekvent Joule-uppvärmning är försumbar i sfäriska AuNPs, men anses möjlig i långa nanotrådar. Det är av särskilt intresse att studera hur närvaron av ett tunt dielektriskt skal påverkar uppvärmningskapaciteten i ellipsoida AuNPs. Inom den tänkta medicinska tillämpningen är AuNPs belagda med funktionaliserade ligander för att kunna riktas mot en specifik tumör. Joule-uppvärmningen av belagda AuNPs i vävnad studeras således med avseende på beläggningsegenskaperna för AuNPs av alla sfäroida former på nanoskala. Det dielektriska skalet visar sig starkt påverka den totala AuNP-värmeabsorptionen, och effekten är starkt beroende av beläggningens elektromagnetiska och geometriska egenskaper. De ligander som ska användas i de praktiska tillämpningarna bör därför utvärderas baserat på dessa egenskaper, i tillägg till deras målinriktningsförmåga och biokompatibilitet.

Slutligen undersöks den elektroforetiska uppvärmningen av AuNP suspensioner. I litteraturen har denna mekanism främst utvärderats för sfäriska AuNPs i vattenlösningar. Här studeras den elektroforetiska uppvärmningen för en godtycklig sfäroid form på nanoskala. Uppvärmningen visar sig vara starkast för sfäriska AuNPs som är några nanometer stora och spridda i vatten, men betydande uppvärmning observeras också i nanostavar upp till 40 nm i längd och nanodiskar med diametrar upp till 10 nm. Den elektroforetiska effekten påverkas emellertid starkt av bakgrundslösningen. På grund av den höga viskositeten i vävnader, och i synnerhet i cancervävnader, antyder studien att elektroforetisk uppvärmning av AuNPs är försumbar i dessa medier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 55
Series
TRITA-EECS-AVL ; 2025:5
Keywords
gold nanoparticles, radiofrequency, hyperthermia, cancer therapy, scattering theory, waveguide theory
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology Atom and Molecular Physics and Optics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-356769 (URN)978-91-8106-146-8 (ISBN)
Public defence
2025-01-17, https://zoom.us/j/64235189553, H1, Teknikringen 33, Stockholm, 09:30 (English)
Opponent
Supervisors
Available from: 2024-11-29 Created: 2024-11-29 Last updated: 2024-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Hennert, OlleThemptander, Robert

Search in DiVA

By author/editor
Svendsen, Brage B.Hennert, OlleThemptander, RobertDalarsson, Mariana
By organisation
Electromagnetic Engineering and Fusion Science
In the same journal
Nanoscale Advances
Nano TechnologyBiomaterials ScienceOther Electrical Engineering, Electronic Engineering, Information EngineeringAtom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf