kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal gait design for a soft quadruped robot via multi-fidelity Bayesian optimization
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0003-4535-3849
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0009-0003-2381-1850
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0001-9221-0918
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0001-5703-5923
Show others and affiliations
2025 (English)In: Applied Soft Computing, ISSN 1568-4946, E-ISSN 1872-9681, Vol. 169, article id 112568Article in journal (Refereed) Published
Abstract [en]

This study focuses on the locomotion capability improvement in a tendon-driven soft quadruped robot through an online adaptive learning approach. Leveraging the inverse kinematics model of the soft quadruped robot, we employ a central pattern generator to design a parametric gait pattern, and use Bayesian optimization (BO) to find the optimal parameters. Further, to address the challenges of modeling discrepancies, we implement a multi-fidelity BO approach, combining data from both simulation and physical experiments throughout training and optimization. This strategy enables the adaptive refinement of the gait pattern and ensures a smooth transition from simulation to real-world deployment for the controller. Compared to previous result using a fixed gait pattern, the multi-fidelity BO approach improves the robot’s average walking speed from 0.14 m/s to 0.214 m/s, an increase of 52.7%. Moreover, we integrate a computational task off-loading architecture by edge computing, which reduces the onboard computational and memory overhead, to improve real-time control performance and facilitate an effective online learning process. The proposed approach successfully achieves optimal walking gait design for physical deployment with high efficiency, effectively addressing challenges related to the reality gap in soft robotics.

Place, publisher, year, edition, pages
Elsevier BV , 2025. Vol. 169, article id 112568
Keywords [en]
soft quadruped robot; Reality gap; Multi-fidelity Bayesian optimization; Edge computing
National Category
Robotics and automation Control Engineering Other Mechanical Engineering
Research subject
Applied and Computational Mathematics, Optimization and Systems Theory; Information and Communication Technology; Machine Design
Identifiers
URN: urn:nbn:se:kth:diva-357777DOI: 10.1016/j.asoc.2024.112568ISI: 001383577700001Scopus ID: 2-s2.0-85211232861OAI: oai:DiVA.org:kth-357777DiVA, id: diva2:1921681
Projects
TECoSAKTH XPRES
Funder
Vinnova, TecosaXPRES - Initiative for excellence in production research
Note

QC 20250204

Available from: 2024-12-17 Created: 2024-12-17 Last updated: 2025-03-06Bibliographically approved
In thesis
1. Optimal Control and Coordination of Autonomous Intelligent Systems by Edge Computing
Open this publication in new window or tab >>Optimal Control and Coordination of Autonomous Intelligent Systems by Edge Computing
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous Intelligent Systems (AIS) are transforming various sectors by integrating advanced control theories, artificial intelligence, and cyber-physical systems. However, AIS control development faces significant challenges, including ensuring real-time responsiveness, designing adaptive controllers for dynamic environments, and coordinating multi-agent systems under uncertainties. These issues are exacerbated in resource-constrained settings, where balancing computational demands and real-time performance is critical.

To mitigate these challenges, this thesis leverages edge computing to enhance system performance, so that data-driven methods and optimal control technologies become feasible for complex AIS applications. Edge computing is a scheme that brings computation, communication, and storage resources closer to data sources, to achieve low-latency processing, real-time adaptability, and scalable solutions for AIS applications. It provides two key benefits: (1) offloading computationally intensive tasks to nearby edge servers, so as to ensure responsive and efficient operations despite constrained resources onboard, and (2) facilitating decentralized coordination among multiple agents by exploiting the edge server as a trustworthy node, so as to improve system scalability, reliability, and collaborative decision-making.

Building on the advantages of the offloading and coordination capabilities inherent in edge computing, this thesis investigates how these features can be harnessed to overcome the limitations of AIS in achieving optimal control and coordination. Primary contributions of this thesis include: (1) the development of state estimation and data-driven optimal control algorithms, which enables more precise estimation and control in nonlinear, time-variant systems; (2) the design of edge-based computational task offloading algorithms to achieve real-time adaptive control and learning by distributing computationally intensive tasks, which effectively balances latency and resource constraints; and (3) the introduction of decentralized optimization frameworks for multi-agent systems, which enhances scalability, robustness, and coordination under communication constraints by leveraging edge servers as trustworthy nodes for efficient collaboration and decision-making. All contributions have been validated through case studies in soft robotics and connected and autonomous vehicles, demonstrating their effectiveness and advancements over existing methods.

In summary, this thesis advances AIS capabilities by addressing real-time computational challenges and enabling optimal, data-driven control and decentralized coordination. The integration of edge computing improves the efficiency, scalability, and adaptability of AIS, offering promising opportunities for applications in autonomous mobility and other dynamic domains.

Abstract [sv]

Autonoma intelligenta system (AIS) omvandlar olika sektorer genom att integrera avancerad reglerteknik, artificiell intelligens och cyberfysiska system. Utvecklingen av styrsystem för AIS står dock inför betydande utmaningar, såsom att säkerställa realtidsrespons, utforma adaptiva regulatorer för dynamiska miljöer och samordna multiagentsystem under osäkerheter. Dessa utmaningar är särskilt framträdande i resursbegränsade miljöer, där det är avgörande att balansera beräkningskrav och realtidsprestanda.

För att hantera dessa utmaningar utnyttjar denna avhandling edge computing för att förbättra systemprestanda och möjliggöra data-drivna metoder samt optimal styrning för komplexa AIS-applikationer. Edge computing innebär att beräknings-, kommunikations- och lagringsresurser flyttas närmare datakällorna, vilket möjliggör låglatensbearbetning, realtidsanpassning och skalbara lösningar. Detta tillvägagångssätt erbjuder två betydelsefulla fördelar: (1) avlastning av beräkningstunga uppgifter till närliggande edge-servrar för att säkerställa responsiva och effektiva operationer trots begränsade resurser ombord, och (2) decentraliserad samordning mellan flera agenter genom att utnyttja edge-servrar som tillförlitliga noder, vilket förbättrar systemets skalbarhet, robusthet och collaborative decision-making.

Genom att dra nytta av edge computing och dess möjligheter till beräkningsavlastning och decentraliserad samordning undersöker denna avhandling hur dessa funktioner kan användas för att övervinna AIS-begränsningar inom optimal reglering och koordination. De huvudsakliga bidragen i avhandlingen inkluderar: (1) utveckling av algoritmer för tillståndsskattning och data-driven optimal styrning, vilket möjliggör mer exakt skattning och styrning av icke-linjära, tidsvarierande system; (2) design av edge-baserade algoritmer för beräkningsavlastning, vilket möjliggör realtidsanpassad reglering och inlärning genom att distribuera beräkningstunga uppgifter och därmed balansera latens och resursbegränsningar; samt (3) introduktion av decentraliserade optimeringsramverk för multiagentsystem, vilket förbättrar skalbarhet, robusthet och koordination under kommunikationsbegränsningar genom att utnyttja edge-servrar som pålitliga noder för effektivt samarbete och beslutsfattande. Alla bidrag har validerats genom fallstudier inom mjukrobotik och uppkopplade autonoma fordon, vilket påvisar deras effektivitet och förbättringar jämfört med befintliga metoder.

Sammanfattningsvis stärker denna avhandling AIS genom att adressera realtidsberäkningsutmaningar och möjliggöra optimal, data-driven styrning och decentraliserad koordination. Genom att integrera edge computing förbättras AIS effektivitet, skalbarhet och anpassningsförmåga, vilket öppnar för lovande tillämpningar inom autonom mobilitet och andra dynamiska områden.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2025. p. 77
Series
TRITA-ITM-AVL ; 2025:8
Keywords
Optimal Control, Decentralized Coordination, Real-Time Control, Edge Computing, Soft Robotics, Connected and Autonomous Vehicles, Optimal Reglering, Decentraliserad Koordinering, Realtidsstyrning, Edge Computing, Mjukrobotik, Uppkopplade och Autonoma Fordon vi
National Category
Control Engineering Robotics and automation Vehicle and Aerospace Engineering
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-360950 (URN)978-91-8106-220-5 (ISBN)
Public defence
2025-03-31, Gladan / https://kth-se.zoom.us/j/69313070114, Brinellvägen 85, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2025-03-07 Created: 2025-03-06 Last updated: 2025-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tan, KaigeNiu, XuezhiJi, QingleiFeng, LeiTörngren, Martin

Search in DiVA

By author/editor
Tan, KaigeNiu, XuezhiJi, QingleiFeng, LeiTörngren, Martin
By organisation
Mechatronics and Embedded Control Systems
In the same journal
Applied Soft Computing
Robotics and automationControl EngineeringOther Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 141 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf