Grid-forming (GFM) inverters are anticipated to play an essential role in facilitating the integration of renewable energy in bulk power systems. The fault response of GFM inverters and its impact on traditional protection schemes are ongoing research topics. Distance protection is today one of the most commonly applied protection schemes and depends on multiple system preconditions for reliable operation—many of which may no longer hold in systems with a high penetration of inverters. This paper investigates the impacts of GFM inverters on distance protection, with the main objective of providing an improved understanding of the topic. Important interoperability issues are highlighted with simulation results and elaborated upon based on the theory behind the distance relay model and the behaviours of GFM inverters during faults. The simulations consider numerous fault types and two GFM inverters with different current-limiting control techniques in their fault-ride through strategies. Results indicate several challenges that state-of-the-art distance relays may face with GFM inverters.
QC 20250124