kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chitosan-based sustainable coatings for multifunctional applications
KTH, School of Engineering Sciences (SCI), Applied Physics, Light and Matter Physics. KTH, School of Engineering Sciences (SCI), Applied Physics, Bio-Opto-Nano Physics. (FNM)ORCID iD: 0000-0002-5891-0053
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 2: Zero hunger, SDG 9: Industry, innovation and infrastructure, SDG 14: Life below water
Abstract [en]

Marine resources play a crucial role in supporting the blue economy and addressing global challenges to achieve some of the UN’s Sustainable Development Goals (SDGs). However, the marine ecosystem is adversely affected by plastic pollution, biofouling, and corrosion; thus, there is an urgent need for sustainable solutions. Chitosan, derived from chitin, the second most abundant biopolymer on Earth after cellulose, offers promising potential due to its unique biodegradable, water-soluble, antimicrobial, and film-forming properties. This thesis summarizes the sustainable extraction of chitosan, chemical modification of chitosan derivatives, and the application of chitosan coatings for antimicrobial, UV-filtering, corrosion prevention, and marine antifouling. In the first part of the thesis, extraction of chitosan from food waste was carried out using green solvents as a sustainable solution for circular economy. Further, the antimicrobial activity of chitosan was enhanced by developing nanocomposites with core-shell ZnO@SnOx particles, which demonstrated a significant potential in food packaging application. To achieve even greater antimicrobial efficacy and UV-blocking capabilities, chitosan was chemically grafted with benzophenone-3 (BP-3), a plant extract known for its UV filtering properties. The antimicrobial activity of the obtained chitosan-BP-3 coatings was evaluated against both Gram-negative and Gram-positive bacteria, and the hydroxyl group on benzophenone-3 is found playing a crucial role in the antimicrobial effectiveness. Continuous irradiation tests showed that the coating possesses long-term UV-blocking effect. Biofouling is a process about the settlement of micro- and macro-organisms on any substance immersed in water, leading to significant economic losses due to increased drag, material degradation, and maintenance costs in marine and industrial applications. To address this challenge, polyethylene glycol (PEG)-grafted chitosan coatings with varied chain length of PEG were synthesized, aiming to reduce microbial and diatom adhesion. This was achieved by modulating the brush effect and hydrophilicity of the surface coatings. Moreover, ZnO-Ag nanoparticles embedded in the coating has shown playing a bactericidal role under light or in the dark. On the other hand, it is urgent to find alternatives to the prevalent but environmentally unfriendly epoxy resin in anticorrosive coatings and prevent the embedded anti-corrosion agents from discharging into water. Multifunctional chitosan coatings have emerged as a promising solution for marine corrosion prevention and antifouling applications. For the first time, corrosion inhibitor, 2-mercaptobenzotriazole (MBT), was chemically linked to chitosan. In addition, new anti-corrosion mechanism was proposed based on the chitosan-MBT coatings. The corrosion resistance of the chitosan-MBT coating was improved by 40 times compared with the chitosan and MBT mixture coating. This bifunctional chitosan-MBT coating had also exhibited superior antifouling effect against settlement of mussels for 48 h. The work presented in this thesis highlights the versatility and potential of chitosan as an emerging biomaterial for sustainable development in the fields of antimicrobial, food packaging, marine antifouling, and corrosion prevention.

Abstract [sv]

Marina resurser spelar en avgörande roll för att stödja den blå ekonomin och bidra till att uppnå flera av FN:s globala mål för hållbar utveckling (SDG). Samtidigt hotas marina ekosystemet av plastföroreningar, biofouling och korrosion. Detta skapar ett akut behov av hållbara lösningar. Kitosan, som utvinns från kitin – den näst vanligaste biopolymeren på jorden efter cellulosa – har stor potential. Detta beror på dess unika egenskaper, såsom biologisk nedbrytbarhet, vattenlöslighet, antimikrobiell aktivitet och förmåga att bilda skyddande filmer. Denna avhandling undersöker hållbar utvinning av kitosan, dess kemiska modifiering och dess tillämpningar inom antimikrobiella beläggningar, UV-filter, applikationer.

I avhandlingens första del utvanns kitosan från matavfall med hjälp av gröna lösningsmedel som en hållbar strategi för en cirkulär ekonomi. Vidare förbättrades kitosans antimikrobiella aktivitet genom att utveckla nanokompositer med kärn-skalsstruktur av ZnO@SnOx-partiklar, som visade betydande potential inom livsmedelsförpackningar. För att ytterligare förbättra den antimikrobiella effektiviteten och UV-blockerande egenskaper modifierades kitosan kemiskt med bensofenon-3 (BP-3), ett växtextrakt känt för sina UV-filteregenskaper. Den antimikrobiella aktiviteten hos de framställda kitosan-BP-3-beläggningarna testades mot både gramnegativa och grampositiva bakterier. Resultatet visade att hydroxylgruppen på bensofenon-3 spelade en avgörande roll för beläggningarnas antimikrobiella effekten. Kontinuerliga bestrålningstester visade dessutom att beläggningen bibehöll långvariga UV-blockerande egenskaper.

Biofouling är en process där mikro- och makroorganismer fäster sig  på material nedsänkta i vatten. Detta orsakar betydande ekonomiska förluster på grund av ökad friktion, materialnedbrytning och höga underhållskostnader inom marina och industriella tillämpningar. För att hantera detta problem syntetiserades kitosanbaserade beläggningar med polyetylenglykol (PEG) av varierande kedjelängd. Syftet var att minska vidhäftning av mikroorganismer och kiselalger. Detta uppnåddes genom att modulera borsteffekten och hydrofiliciteten hos ytan. Dessutom visade sig ZnO-Ag-nanopartiklar, inbäddade i beläggningen, ha bakteriedödande egenskaper både i ljus och mörker.

Det är samtidigt brådskande att hitta alternativ till de utbredda men miljöovänliga epoxihartser som används i korrosionsskyddande beläggningar. Det är också viktigt att förhindra att de inbäddade korrosionsskyddsmedlen släpps ut i vattnet. Multifunktionella kitosanbeläggningar har framträtt som en lovande lösning för att förebygga marin korrosion och biofouling. För första gången har korrosionsinhibitorn 2-merkaptobenzotriazol (MBT) kemiskt bundits till kitosan. En ny mekanism för korrosionsskydd föreslogs också baserad på kitosan-MBT-beläggningar. Jämfört med en blandning av kitosan och MBT visade sig kitosan-MBT-beläggningen 40 gånger bättre korrosionsresistens.Denna tvåfunktionella kitosan-MBT-beläggning uppvisade dessutom överlägsna antifouling-egenskaper genom att förhindra musslors vidhäftning under 48 timmar.

Arbetet som presenteras i denna avhandling belyser mångsidigheten och potentialen hos kitosan som ett framväxande biomaterial. Dess tillämpningar omfattar områden som antimikrobiella tillämpningar, livsmedelsförpackningar, marin antifouling och korrosionsskydd. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. , p. 64
Series
TRITA-SCI-FOU ; 2025:06
National Category
Textile, Rubber and Polymeric Materials
Research subject
Physics, Material and Nano Physics
Identifiers
URN: urn:nbn:se:kth:diva-360015ISBN: 978-91-8106-193-2 (print)OAI: oai:DiVA.org:kth-360015DiVA, id: diva2:1937798
Public defence
2025-03-07, FB52, Albanova, Roslagstullsbacken 21, 114 21 Stockholm, Sweden, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 2025-02-17

Available from: 2025-02-17 Created: 2025-02-14 Last updated: 2025-04-01Bibliographically approved
List of papers
1. Chitosan modified with bio-extract as an antibacterial coating with UV filtering feature
Open this publication in new window or tab >>Chitosan modified with bio-extract as an antibacterial coating with UV filtering feature
Show others...
2023 (English)In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 230, article id 123145Article in journal (Refereed) Published
Abstract [en]

Benzophenone-3 grafted chitosan (CS-BP-3) was successfully synthesized and applied as an antibacterial coating for the first time. The grafting mechanism is based on the reaction between ketone and primary amine to form imine derivatives and the chemical structure of grafted chitosan was studied by Fourier transform infrared (FTIR) spectroscopy. Water solubility of BP-3 is enhanced after covalently grafted on chitosan and consequently renders the chitosan coating with UV blocking property. Results of thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) further confirmed the thermal stability of BP-3 modified chitosan is enhanced. The CS-BP-3 coating was applied on a variety of substrates of glass, plastics, wood, and metal. The surface features of the coatings such as morphology, water contact angle (WCA), and surface roughness were investigated. The optical and thermal stabilities of the coatings under UV irradiation were studied for 16 h. Antibacterial activity of CS-BP-3 was evaluated against both Gram-negative and Gram-positive bacteria. And the results of bacterial inhibition by CS-BP-3 coating indicate its potential for future application in food packaging.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Chitosan, Benzophenone-3, Green coating, Antibacterial, UV -blocking
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-324352 (URN)10.1016/j.ijbiomac.2023.123145 (DOI)000924926000001 ()36621742 (PubMedID)2-s2.0-85146312611 (Scopus ID)
Note

QC 20230228

Available from: 2023-02-28 Created: 2023-02-28 Last updated: 2025-02-14Bibliographically approved
2. Chitosan-photocatalyst nanocomposite on polyethylene films as antimicrobial coating for food packaging
Open this publication in new window or tab >>Chitosan-photocatalyst nanocomposite on polyethylene films as antimicrobial coating for food packaging
Show others...
2024 (English)In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 186, article id 108069Article in journal (Refereed) Published
Abstract [en]

Chitosan (CS), an edible and non-toxic natural biopolymer, has been widely used in food preservation attributed to its intrinsic antimicrobial, biodegradable, and excellent film-forming properties. In this work, we report photocatalyst-loaded chitosan coating on commercial polyethylene (PE) film with enhanced antimicrobial properties for food packaging application. To improve the chemical stability of zinc oxide (ZnO) photocatalyst in acidic chitosan matrix, a thin layer (1–5 nm) of amorphous tin oxide (SnOx) was coated on ZnO nanoparticles. Consequently, the charge transfer efficiency of ZnO is improved and most of the surface defects are retained according to the studies of UV–Vis and fluorescence spectroscopy. The thin SnOx coating on ZnO was observed by high-resolution transmission electron microscopy (HRTEM) and its effects on crystallinity and particle size of ZnO were examined using X-ray diffraction (XRD) and particle sizer, respectively. The addition of ZnO@SnOx particles in chitosan coating increases water contact angle (WCA) and enhances thermal stability of chitosan coating. The antimicrobial activity of chitosan, ZnO-SnOx nanoparticles, and CS-ZnO@SnOx coated PE films were examined against both Gram-negative (E. coli, A. faecalis) and Gram-positive (S. aureus, B. subtilis) bacteria. Compared to the limited antimicrobial effects of chitosan, ZnO-SnOx demonstrates an improved inhibition effect on bacterial growth over 48 h period under light. For the CS-ZnO@SnOx nanocomposite coated PE films, no inhibition zone was observed due to the limitation of disc diffusion method. Meanwhile, there were no bacterial colonies found to develop on the film, rendering this CS nanocomposite coating a good candidate for food packaging applications.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Antimicrobial, Chitosan, Coating, Food packaging, Photocatalyst
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-340108 (URN)10.1016/j.porgcoat.2023.108069 (DOI)001112676900001 ()2-s2.0-85176446273 (Scopus ID)
Note

QC 20231128

Available from: 2023-11-28 Created: 2023-11-28 Last updated: 2025-02-14Bibliographically approved
3. Antifouling activity of PEGylated chitosan coatings: Impacts of the side chain length and encapsulated ZnO/Ag nanoparticles
Open this publication in new window or tab >>Antifouling activity of PEGylated chitosan coatings: Impacts of the side chain length and encapsulated ZnO/Ag nanoparticles
2024 (English)In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 281, article id 136316Article in journal (Refereed) Published
Abstract [en]

PEGylation is regarded as a common antifouling strategy and the effect is normally linked with surface hydrophilicity of the coatings. Herein, the biopolymer chitosan (CS) was grafted by polyethylene glycol (PEG) of different chain lengths (molecular weight 200, 4 k and 100 k Da) to verify if the hydrophilicity of CS-PEG coatings is crucial in determining antifouling activities and if PEG chain length influences biofouling in marine environment. Properties of copolymers such as melting points and crystallinity are affected by grafting PEG. The water contact angle (WCA) of CS-PEG coatings increases with the chain length of grafted PEG, from 27° to 58°. Photocatalyst of zinc oxide-silver (ZnO/Ag) was also studied and its embedment (2 % to CS-PEG) renders the surface of CS-PEG coatings more hydrophobic with WCA increased from 52° to 86°. Antibacterial, anti-diatom, and anti-biofilm activities of the coatings were evaluated in natural sea water. The bacterial density on CS-PEG coatings was dramatically reduced to 4 × 104 compared to the control of 7 × 104 ind/mm2, and further to 2 × 104 for CS-PEG-ZnO/Ag coatings. CS-PEG coatings also strongly inhibit diatoms (120–200 ind/mm2), but the inclusion of ZnO/Ag did not obviously enhance such effect (50–150 ind/mm2). The findings provide useful insights for designing polymer-based antifouling coatings.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Antifouling, Chain length, Chitosan, Coatings, PEG
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-354893 (URN)10.1016/j.ijbiomac.2024.136316 (DOI)001368273000001 ()39370084 (PubMedID)2-s2.0-85205689620 (Scopus ID)
Note

QC 20241217

Available from: 2024-10-16 Created: 2024-10-16 Last updated: 2025-02-14Bibliographically approved
4. Effect of Surface Charge on the Fabrication of Hierarchical Mn-Based Prussian Blue Analogue for Capacitive Desalination
Open this publication in new window or tab >>Effect of Surface Charge on the Fabrication of Hierarchical Mn-Based Prussian Blue Analogue for Capacitive Desalination
2022 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 14, no 35, p. 40371-40381Article in journal (Refereed) Published
Abstract [en]

Multiple and hierarchical manganese (Mn)-based Prussian blue analogues obtained on different substrates are successfully prepared using a universal, facile, and simple strategy. Different functional groups and surface charge distributions on carbon cloth have significant effects on the morphologies and nanostructures of Mn-based Prussian blue analogues, thereby indirectly affecting their physicochemical properties. Combined with the advantages of the modified carbon cloth and the nanostructured Mn-based Prussian blue analogues, the composite with negative surface charge formed by the electronegativity differences shows good electrochemical properties, leading to improvement in charge efficiency during capacitive desalination. An asymmetric device fabricated with Mn-based Prussian blue analogue-modified F-doped carbon cloth as the cathode and acid-treated carbon cloth as the anode presents the highest salt adsorption capacity of 10.92 mg g-1 with a charge efficiency of 82.28% and the lowest energy consumption of 0.45 kW h m-3 at 1 V due to the main influencing factor from the negative surface charge leading to co-ion expulsion boosting the capacitive deionization performance. We provide insights for further exploration of the relationship between second-phase materials and carbon cloth, while offering some guidance for the design and preparation of electrodes for desalination and beyond. 

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
Keywords
capacitive deionization, carbon cloth electrode, desalination, electronegativity, Mn-based Prussian blue analogue, surface charge, Carbon, Chemical bonds, Electrodes, Energy utilization, Fabrication, Physicochemical properties, Carbon cloths, Carbon-cloth electrodes, Charge efficiency, Different substrates, Manganese-based prussian blue analog, Negative surface charges, Prussian blue analogues, Simple++, Surface charge distribution
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-327044 (URN)10.1021/acsami.2c08192 (DOI)000848744800001 ()36006982 (PubMedID)2-s2.0-85137632234 (Scopus ID)
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2025-02-14Bibliographically approved
5. Self-sacrificial growth of hierarchical P(Ni, Co, Fe) for enhanced asymmetric supercapacitors and oxygen evolution reactions
Open this publication in new window or tab >>Self-sacrificial growth of hierarchical P(Ni, Co, Fe) for enhanced asymmetric supercapacitors and oxygen evolution reactions
Show others...
2023 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 438, article id 141582Article in journal (Refereed) Published
Abstract [en]

Highly efficient and environmentally friendly multifunctional electrode materials for application in super -capacitors to electrocatalysis are important for advances in the future of electrical energy storage and green hydrogen production. This work reports a simple growth strategy to obtain hierarchical P(Ni, Co, Fe) modified electrodes by phosphating a core/shell composite of nickel-cobalt (NiCo) Prussian blue analogues fabricated through an in situ self-sacrificial growth process. Due to the unique microstructure, abundant surface-active sites, and enhanced interfacial conductivity, the hybrid electrode exhibits specific capacitance as high as 1125.8 F g-1 (3.7 F cm-2) at 2 mA cm-2, excellent rate capability and improved cycling stability (97.1% retention capacitance after 5000 cycles at 50 mA cm-2 and 89.9% after continuous 5000 cycles at 100 mA cm-2). Furthermore, the hybrid structure shows excellent oxygen evolution reaction performance with an overpotential of 252 mV at 100 mA cm-2 and 283 mV at 300 mA cm-2, with a low Tafel slope of 68 mV dec- 1, and overall water splitting abilities with a cell voltage of 1.55 V at 100 mA cm-2. This work provides insights into the design of next -generation high-performance multifunctional electrode materials by controlling the surface/interface of multi -component structures for enhancing their properties.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Hierarchical growth, Prussian blue analogue, Multifunctional electrode, Supercapacitor, Oxygen evolution reaction
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-324054 (URN)10.1016/j.electacta.2022.141582 (DOI)000917077800003 ()2-s2.0-85142757625 (Scopus ID)
Note

QC 20230220

Available from: 2023-02-20 Created: 2023-02-20 Last updated: 2025-02-14Bibliographically approved

Open Access in DiVA

Kappa(4525 kB)116 downloads
File information
File name FULLTEXT04.pdfFile size 4525 kBChecksum SHA-512
a8790faa11db270854a791d76eec35c0acf41b26b1af48447f96e7b4e4daa77810b4a9c99679664fd9ec8ae70400e6745f1906072754714f242d88d479aca1ac
Type fulltextMimetype application/pdf

Authority records

Yu, Dongkun

Search in DiVA

By author/editor
Yu, Dongkun
By organisation
Light and Matter PhysicsBio-Opto-Nano Physics
Textile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 126 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 726 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf