kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Can local explanation techniques explain linear additive models?
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Software and Computer systems, SCS.ORCID iD: 0000-0002-6846-5707
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-5344-8042
Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium.ORCID iD: 0000-0001-8527-5000
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Software and Computer systems, SCS.ORCID iD: 0000-0001-8382-0300
2024 (English)In: Data mining and knowledge discovery, ISSN 1384-5810, E-ISSN 1573-756X, Vol. 38, no 1, p. 237-280Article in journal (Refereed) Published
Abstract [en]

Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions have been raised about the accuracy of the produced local additive explanations. We investigate this by studying whether some of the most popular explanation techniques can accurately explain the decisions of linear additive models. We show that even though the explanations generated by these techniques are linear additives, they can fail to provide accurate explanations when explaining linear additive models. In the experiments, we measure the accuracy of additive explanations, as produced by, e.g., LIME and SHAP, along with the non-additive explanations of Local Permutation Importance (LPI) when explaining Linear and Logistic Regression and Gaussian naive Bayes models over 40 tabular datasets. We also investigate the degree to which different factors, such as the number of numerical or categorical or correlated features, the predictive performance of the black-box model, explanation sample size, similarity metric, and the pre-processing technique used on the dataset can directly affect the accuracy of local explanations.

Place, publisher, year, edition, pages
Springer Nature , 2024. Vol. 38, no 1, p. 237-280
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Computer Systems
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-360215DOI: 10.1007/s10618-023-00971-3ISI: 001067646000001Scopus ID: 2-s2.0-85171464862OAI: oai:DiVA.org:kth-360215DiVA, id: diva2:1939037
Note

QC 20250220

Available from: 2025-02-20 Created: 2025-02-20 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Evaluating the Faithfulness of Local Feature Attribution Explanations: Can We Trust Explainable AI?
Open this publication in new window or tab >>Evaluating the Faithfulness of Local Feature Attribution Explanations: Can We Trust Explainable AI?
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Black-box models have demonstrated incredible performance and accuracy across various modeling problems and benchmarks over the past decade, from detecting objects in images to generating intelligent responses to user queries. Despite their impressive performance, these models suffer from a lack of interpretability, making it difficult to understand their decision-making processes and diagnose errors, which limits their applicability, especially in high-stakes domains such as healthcare and law. Explainable Artificial Intelligence (xAI) is a set of techniques, tools, and algorithms that bring transparency to black-box machine learning models. This transparency is said to bring trust to the users and, as a result, help deploy these models in high-stake decision-making domains. One of the most popular categories of xAI algorithms is local explanation techniques, where the information about the prediction of a black box for a single data instance. One of the most consequential open research problems for local explanation techniques is the evaluation of these techniques. This is mainly because we cannot directly extract ground truth explanations from complex black-box models to evaluate these techniques. In this thesis, we focus on a systematic evaluation of local explanation techniques. In the first part, we investigate whether local explanations, such as LIME, fail systematically or if failures only occur in a few cases. We then discuss the implicit and explicit assumptions behind different evaluation measures for local explanations. Through this analysis, we aim to present a logic for choosing the most optimal evaluation measure in various cases. After that, we proposea new evaluation framework called Model-Intrinsic Additive Scores (MIAS) for extracting ground truth explanations from different black-box models for regression, classification, and learning-to-rank models. Next, we investigate the faithfulness of explanations of tree ensemble models using perturbation-based evaluation measures. These techniques do not rely on the ground truth explanations. The last part of this thesis focuses on a detailed investigation into the faithfulness of local explanations of LambdaMART, a tree-based ensemble learning-to-rank model. We are particularly interested in studying whether techniques built specifically for explaining learning-to-rank models are more faithful than their regression-based counterparts for explaining LambdaMART. For this, we have included evaluation measures that rely on ground truth along with those that do not rely on the ground truth. This thesis presents several influential conclusions. First, we find that failures in local explanation techniques, such as LIME, occur more frequently and systematically, and we explore the mechanisms behind these failures. Furthermore, we demonstrate that evaluating local explanations using ground truth extracted from interpretable models mitigates the risk of blame, where explanations might be wrongfully criticized for lacking faithfulness. We also show that local explanations provide faithful insights for linear regression but not for classification models, such as Logistic Regression and Naive Bayes, or ranking models, such as Neural Ranking Generalized Additive Models (GAMs). Additionally, our results indicate that KernelSHAP and LPI deliver faithful explanations for treebased ensemble models, such as Gradient Boosting and Random Forests, when evaluated with measures independent of ground truth. Lastly, we establish that regression-based explanations for learning-to-rank models consistently outperform ranking-based explanation techniques in explaining LambdaMART. Our conclusion includes a mix of ground truth-dependent and perturbation-based evaluation measures that do not rely on ground truth.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 80
Series
TRITA-EECS-AVL ; 2025:23
Keywords
xai, artificial intelligene, machine learning
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-360228 (URN)978-91-8106-200-7 (ISBN)
Public defence
2025-03-14, Sal C, Ka-Sal C (Sven-Olof Öhrvik), Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20250220

Available from: 2025-02-20 Created: 2025-02-20 Last updated: 2025-03-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Akhavan Rahnama, Amir HosseinBütepage, JudithBoström, Henrik

Search in DiVA

By author/editor
Akhavan Rahnama, Amir HosseinBütepage, JudithGeurts, PierreBoström, Henrik
By organisation
Software and Computer systems, SCSRobotics, Perception and Learning, RPL
In the same journal
Data mining and knowledge discovery
Electrical Engineering, Electronic Engineering, Information EngineeringComputer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf