kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular basis of proton sensing by G protein-coupled receptors
Univ Calif San Francisco, TETRAD Grad Program, San Francisco, CA 94143 USA.;Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA.;Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA..
Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA.;Univ Calif San Francisco, Biophys Grad Program, San Francisco, CA 94143 USA..
Univ N Carolina, Sch Med, Chapel Hill, NC USA.;Univ North Carolina, Natl Inst Mental Hlth Psychoact Drug Screening Pro, Chapel Hill, NC 27599 USA..
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-3219-1062
Show others and affiliations
2025 (English)In: Cell, ISSN 0092-8674, E-ISSN 1097-4172, Vol. 188, no 3Article in journal (Refereed) Published
Abstract [en]

Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extra- cellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues. Using deep mutational scanning (DMS), we determined the functional importance of every residue in GPR68 activation by generating 9,500 mutants and measuring their effects on signaling and surface expression. Constant-pH molecular dynamics simulations provided insights into the conformational landscape and protonation patterns of key residues. This unbiased approach revealed that, unlike other proton-sensitive channels and receptors, no single site is critical for proton recognition. Instead, a network of titratable residues extends from the extracellular surface to the transmembrane region, converging on canonical motifs to activate proton-sensing GPCRs. Our approach integrating structure, simulations, and unbiased functional interrogation provides a framework for understanding GPCR signaling complexity.

Place, publisher, year, edition, pages
Elsevier BV , 2025. Vol. 188, no 3
National Category
Biophysics
Identifiers
URN: urn:nbn:se:kth:diva-360791DOI: 10.1016/j.cell.2024.11.036ISI: 001423720100001PubMedID: 39753132Scopus ID: 2-s2.0-85215611014OAI: oai:DiVA.org:kth-360791DiVA, id: diva2:1941869
Note

QC 20250303

Available from: 2025-03-03 Created: 2025-03-03 Last updated: 2025-03-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Mitrovic, DarkoDelemotte, Lucie

Search in DiVA

By author/editor
Mitrovic, DarkoDelemotte, Lucie
By organisation
BiophysicsScience for Life Laboratory, SciLifeLab
In the same journal
Cell
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf