kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adaptive Measurement Strategies for Network Optimization and Control
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). Ericsson Research. (Statistical Learning and Control)ORCID iD: 0000-0002-6183-8996
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The fifth generation mobile networks has become the new network standard, with the sixth generation on the horizon, and its new technological capabilities have enabled a far wider variety of services compared to the fourth generation networks. To ensure that these services can co-exist and meet their standardized requirements, the network's resources must be provisioned, managed and reconfigured in a far more complex manner than before. As such, it is no longer sufficient to select a simple, static scheme for gathering the necessary information to take decisions. Instead, it is necessary to adaptively, with regards to network system dynamics, trade-off the cost in terms of power, CPU and bandwidth consumption of the taken measurements to the value their information brings. Network optimization is a wide field, and the way to quantify the value of a given measurement heavily depends on the problem studied. As such, this thesis addresses adaptive measurement schemes for a number of well-defined network optimization problems. The thesis is presented as a compilation, where after an introduction detailing the background, purpose, problem formulation, and contributions of our work, we present a more detailed view of the use cases, the theoretical, technological and methodological background together with an outline of our results. Finally we go into even more detail about our work through the appended conference and journal papers.

First, we study the problem of optimal spectrum access for low priority services. We assume that the network manager has limited opportunities to measure the spectrum before assigning one (if any) resource block to the secondary service for transmission, and this measurement has a known cost attached to it. We study this framework through the lens of multi-armed bandits with multiple arm pulls per decision, a framework we call predictive bandits. We analyze such bandits and show a problem specific lower bound on their regret, as well as design an algorithm which meets this regret asymptotically, studying both the case where measurements are perfect and the case where the measurement has noise of known quantity. Studying a synthetic simulated problem, we find that it performs considerably better compared to a simple benchmark strategy.

Secondly, we study a variation of admission control where the controller must select one of multiple slices to enter a new service into. The agent does not know the resources available in the slices initially, and must instead measure these, subject to noise. Mimicking three commonly used admission control strategies, we study this as a best arm identification problem, where one or multiple arms is "correct" (the arm chosen by the strategy if it had full information). Through this framework, we analyze each strategy and devise sample complexity lower bounds, as well as algorithms that meet these lower bounds. In simulations with synthetic data, we show that our measurement algorithm can vastly reduce the number of required measurements compared to uniform sampling strategies. 

Thirdly, we study a network monitoring system where the controller must detect sudden changes in system behavior such as batch traffic arrivals or handovers, in order to take future action. We study this through the lens of change point detection but argue that the classical framework is insufficient for capturing both physical time aspects such as delay as well as measurement costs independently, and present an alternative framework which decouples these, requiring more sophisticated monitoring agents. We show, both through theory and through simulation with both synthetic data and data from a 5G testbed, that such adaptive schedules qualitatively and quantitatively improve upon classical change point detection schemes in terms of measurement frequency, without losing classical optimality guarantees such as the one on required measurements post change, and can do so even when very little is information a priori about the distribution of measurements post-change.

Finally, we combine the problems of dynamic spectrum access and change monitoring by studying change detection in a finite-state Markov chain model, with the two-state model as an interesting special case. Here, both classical methods as well as our methods from the case of independent measurements are insufficient to capture the complexities of the problem. We show fundamental limits of measurements on any agent in this case and study two heuristic policies, showing their advantages and disadvantages to both each other and a naive measurement strategy. Then, we evaluate their performance and measurement costs through simulation both with synthetic data and data from Wi-Fi spectrum utilization measurements.

Abstract [sv]

Femte generationens mobilnätverk har blivit den nya nätverksstandarden, med den sjätte generationen på horisonten, och dess teknologiska förmågor har berett väg för en avsevärt större variation av tjänster jämfört med fjärde generationens nätverk. För att se till att dessa tjänster kan samexistera och möta sina standardiserade krav måste nätverkens resurser provisioneras, hanteras och omkonfigureras på ett mycket mer komplext vis än tidigare. Det är därmed inte längre tillräckligt att välja en simpel, statisk plan för att samla den nödvändiga information som krävs för att ta beslut. Istället behöver man adaptivt, med hänsyn till nätversystemens dynamik, avväga mätningarnas kostnad i termer av effekt-, CPU- och bandbreddskonsumtion mot det värde som de medför. Den här sortens nätverksoptimering är ett brett fält, och hur mätningarnas värde ska kvantifieras beror i hög grad på vilket optimeringsproblem som studeras. Således bemöter den här avhandlningen adaptiva mätplaner för ett antal väldefinerade optimeringsproblem. Avhandlingen tar formen av en sammanlänkning, där följandes en introduktion som beskriver bakgrund, syfte, problemformulering och forskningsbidrag så presenterar vi en detaljbild över problemens användningsområde, deras teoretiska, teknologiska och metodologiska bakgrund samt våra resultat. Vi avslutare med att gå djupare in i varje problem separat genom de artiklar vi inlämnat till olika konferenser och journaler.

Först studerar vi optimal spektrumaccess för lågprioritetstjänster. Vi antar att nätverksregulatorn har begränsat med möjligheter att mäta spektrumanvändning innan den tillger som mest ett resursblock till tjänsten med lägre prioritet att skicka data på, och de här mätningarna har en känd kostnad. Vi studerar det här ramverket från perspektivet av flerarmade banditer med flera armdragningar per beslut, ett ramverk vi benämner förutsägande banditer (predictive bandits). Vi analyserar sådana banditer och visar en problemspecifik undre gräns på dess inlärningsförlust, samt designar en algorithm som presterar lika bra som denna gräns i den asymptotiska regimen. Vi studerar fallet där mätningarna är perfekta såväl som fallet där mätningarna har brus med känd storlek. Genom att studera ett syntetiskt simulerat problem av detta slag finner vi att vår algoritm presterar avsevärt bättre jämfört med en simplare riktmärkesstrategi.

Därefter studerar vi en variation av tillträdeskontroll, där en regulator måste välja en av ett antal betjänter att släppa in en ny tjänst till (om någon alls). Agenten vet ursprungligen inte vilka resurser som finns betjänterna tillgängliga, utan måste mäta detta med brusiga mätningar. Vi härmar tre vanligt använda tillträdesstrategier och studerar detta som ett bästa-arms identifieringsproblem, där en eller flera armar är "korrekta" (det vill säga, de armar som hade valts av tillträdesstrategin om den hade haft perfekt kännedom). Med det här ramverket analyserar vi varje strategi och visar undre gränser på antalet mätningar som krävs, och skapar algoritmer som möter dessa gränser. I simuleringar med syntetisk data visar vi att våra mätalgoritmer kan drastiskt reducera antalet mätningar som krävs jämfört med jämlika mätstrategier.

Efter det studerar vi ett övervakningssystem där agenten måste upptäcka plötsliga förändringar i systemets beteende såsom förändringar i trafiken eller överräckningar mellan master, för att kunna agera därefter. Vi studerar detta med ramverket förändringsdetektion, men argumenterar att det klassiska ramverket är otillräckligt för att bemöta aspekter berörande fysisk tid (som fördröjning) samtidigt som den bemöter  mätningarnas kostnad. Vi presenterar därmed ett alternativt ramverk som frikopplar de två, vilket i sin tur kräver mer sostifikerade övervakningssystem. Vi visar, genom både teori och simulering med både syntetisk och experimentell data, att sådana adaptiva mätscheman kan förbättra mätfrekvensen jämfört med klassiska periodiska mätscheman, både kvalitativt och kvantitativt, utan att förlora klassiska optimalitetsgarantier såsom det på antalet mätningar som behövs när förändringen har skett. Vi visar också att de kan göra så även när väldigt lite information om mätningarnas distribution efter förändring är a priori känt för agenten.

Slutligen kombinerar vi problemen kring optimal spektrumaccess och \\övervakning genom att studera förändringsdetektion i en Markovkedjemodell med ändligt antal tillstånd, där två tillstånd är ett specialfall av särskilt intresse. I det fallet är både klassiska metoder och våra tidigare metoder otillräckliga för att fånga komplexiteterna i problemet. Vi härleder fundamentala gränser på mängden mätningar som alla agenteer behöver i det här fallet och studerar två heuristiska policier, där vi visar deras för- och nackdelar gentemot både varandra och en naiv mätstrategi. Därefter utvärderar vi deras prestanda och mätkostnader genom simulering med både syntetisk data såväl som data från spektrumanvändningsmätningar i Wi-Fi.

Place, publisher, year, edition, pages
Stockholm, Sweden: Kungliga Tekniska högskolan, 2025. , p. 92
Series
TRITA-EECS-AVL ; 2025:20
Keywords [en]
Network optimization, network management, multi-armed bandits, admission control, change point detection, statistical learning, telecommunication
National Category
Control Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-360485ISBN: 978-91-8106-192-5 (print)OAI: oai:DiVA.org:kth-360485DiVA, id: diva2:1941960
Public defence
2025-03-28, D3, Lindstedtsvägen 9, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20250303

Available from: 2025-03-03 Created: 2025-03-03 Last updated: 2025-03-03Bibliographically approved
List of papers
1. Predictive Bandits
Open this publication in new window or tab >>Predictive Bandits
2020 (English)In: Proceedings of the IEEE Conference on Decision and Control, Jeju, Korea: Institute of Electrical and Electronics Engineers (IEEE) , 2020, p. 1170-1176Conference paper, Published paper (Refereed)
Abstract [en]

We introduce and study a new class of stochastic bandit problems, referred to as predictive bandits. In each round, the decision maker first decides whether to gather information about the rewards of particular arms (so that their rewards in this round can be predicted). These measurements are costly, and may be corrupted by noise. The decision maker then selects an arm to be actually played in the round. Predictive bandits find applications in many areas; e.g. they can be applied to channel selection problems in radio communication systems, or in recommendation systems. In this paper, we provide the first theoretical results about predictive bandits, and focus on scenarios where the decision maker is allowed to measure at most one arm per round and the rewards are Bernoulli random variables. We derive asymptotic instance-specific regret lower bounds for these problems, and develop algorithms whose regret match these fundamental limits. We illustrate the performance of our algorithms through numerical experiments. In particular, we highlight the gains that can be achieved by using reward predictions, and investigate the impact of the noise in the corresponding measurements. 

Place, publisher, year, edition, pages
Jeju, Korea: Institute of Electrical and Electronics Engineers (IEEE), 2020
Keywords
Radio communication, Stochastic systems, Bandit problems, Bernoulli random variables, Channel selection, Decision makers, Lower bounds, Numerical experiments, Decision making
National Category
Computer Sciences Control Engineering
Identifiers
urn:nbn:se:kth:diva-301205 (URN)10.1109/CDC42340.2020.9304297 (DOI)000717663401009 ()2-s2.0-85099875750 (Scopus ID)
Conference
59th IEEE Conference on Decision and Control, CDC 2020, Virtual/Jeju Island, 14 December 2020 through 18 December 2020
Funder
Knut and Alice Wallenberg Foundation
Note

Part of ISBN 978-1-7281-7447-1

QC 20231017

Available from: 2021-09-07 Created: 2021-09-07 Last updated: 2025-03-03Bibliographically approved
2. Measurement-based Admission Control in Sliced Networks: A Best Arm Identification Approach
Open this publication in new window or tab >>Measurement-based Admission Control in Sliced Networks: A Best Arm Identification Approach
2022 (English)In: 2022 IEEE Global Communications Conference, GLOBECOM 2022: Proceedings, Rio de Janeiro, Brazil: Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 1484-1490Conference paper, Published paper (Refereed)
Abstract [en]

In sliced networks, the shared tenancy of slices requires adaptive admission control of data flows, based on measurements of network resources. In this paper, we investigate the design of measurement-based admission control schemes, deciding whether a new data flow can be admitted and in this case, on which slice. The objective is to devise a joint measurement and decision strategy that returns a correct decision (e.g., the least loaded slice) with a certain level of confidence while minimizing the measurement cost (the number of measurements made before committing to the decision). We study the design of such strategies for several natural admission criteria specifying what a correct decision is. For each of these criteria, using tools from best arm identification in bandits, we first derive an explicit information-theoretical lower bound on the cost of any algorithm returning the correct decision with fixed confidence. We then devise a joint measurement and decision strategy achieving this theoretical limit. We compare empirically the measurement costs of these strategies, and compare them both to the lower bounds as well as a naive measurement scheme. We find that our algorithm significantly outperforms the naive scheme (by a factor 2 - 8).

Place, publisher, year, edition, pages
Rio de Janeiro, Brazil: Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
Network management, Admission Control, Best Arm Identification, Sequential Analysis
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-336594 (URN)10.1109/GLOBECOM48099.2022.10001053 (DOI)000922633501085 ()2-s2.0-85146950588 (Scopus ID)
Conference
2022 IEEE Global Communications Conference, GLOBECOM 2022, Virtual/Online, 4 December - 8 December 2022
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

Part of ISBN 978-1-6654-3540-6

QC 20230915

Available from: 2023-09-14 Created: 2023-09-14 Last updated: 2025-03-03Bibliographically approved
3. Change Point Detection with Adaptive Measurement Schedules for Network Performance Verification
Open this publication in new window or tab >>Change Point Detection with Adaptive Measurement Schedules for Network Performance Verification
2023 (English)In: Proceedings of the ACM on Measurement and Analysis of Computing Systems, E-ISSN 2476-1249, Vol. 7, no 3, article id 53Article in journal (Refereed) Published
Abstract [en]

When verifying that a communications network fulfills its specified performance, it is critical to note sudden shifts in network behavior as quickly as possible. Change point detection methods can be useful in this endeavor, but classical methods rely on measuring with a fixed measurement period, which can often be suboptimal in terms of measurement costs. In this paper, we extend the existing framework of change point detection with a notion of physical time. Instead of merely deciding when to stop, agents must now also decide at which future time to take the next measurement. Agents must now minimize the necessary number of measurements pre- and post-change, while maintaining a trade-off between post-change delay and false alarm rate. We establish, through this framework, the suboptimality of typical periodic measurements and propose a simple alternative, called crisis mode agents. We show analytically that crisis mode agents significantly outperform periodic measurements schemes. We further verify this in numerical evaluation, both on an array of synthetic change point detection problems as well as on the problem of detecting traffic load changes in a 5G test bed through end-to-end RTT measurements.

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM), 2023
Keywords
Applied statistics, Change detection, Hypothesis testing, Network management, Network measurements
National Category
Control Engineering Computer Sciences
Identifiers
urn:nbn:se:kth:diva-341756 (URN)10.1145/3626784 (DOI)2-s2.0-85179886605 (Scopus ID)
Note

Not duplicate with DiVA 1797759

QC 20240102

Available from: 2024-01-02 Created: 2024-01-02 Last updated: 2025-03-03Bibliographically approved
4. RoME-QCD: Robust and Measurement Efficient Quickest Change Detection in 5G Networks
Open this publication in new window or tab >>RoME-QCD: Robust and Measurement Efficient Quickest Change Detection in 5G Networks
2024 (English)In: Proceedings Of The 8Th Network Traffic Measurement And Analysis Conference, Tma 2024, IEEE , 2024Conference paper, Published paper (Refereed)
Abstract [en]

To effectively monitor a network and verify its performance, it is essential to quickly detect sudden changes in its state, even when the form of such a change is initially unknown. While classical quickest change detection methods are potentially useful, they rely on probing the network state periodically, which in turn, may induce high measurement costs. In this paper, we extend existing frameworks in quickest change detection to allow for both adaptive measurement periods and unknown post-change measurement distribution. In our extended framework, the agent decides both when to raise an alarm and when to take the next measurement (if any), maintaining a trade-off between detection delay, false alarm rate and measurement costs. We evaluate both classical methods with periodic measurements as well as our adaptive scheme, called RoME-QCD (Robust and Measurement Efficient Quickest Change Detection). We demonstrate the latter's superiority analytically and verify this observation via numerical experiments, both using one-way delay data from a 5G testbed and synthetically generated data.

Place, publisher, year, edition, pages
IEEE, 2024
National Category
Signal Processing
Identifiers
urn:nbn:se:kth:diva-351410 (URN)10.23919/TMA62044.2024.10558964 (DOI)001258591000004 ()2-s2.0-85197907116 (Scopus ID)
Conference
8th Network Traffic Measurement and Analysis Conference (TMA), MAY 21-24, 2024, Dresden, GERMANY
Note

QC 20240812

Part of ISBN 979-8-3503-7888-7, 978-3-903176-64-5

Available from: 2024-08-12 Created: 2024-08-12 Last updated: 2025-03-03Bibliographically approved
5. Measurement-Efficient Quickest Change Detection in On-Off Models for Dynamic Spectrum Access
Open this publication in new window or tab >>Measurement-Efficient Quickest Change Detection in On-Off Models for Dynamic Spectrum Access
(English)Manuscript (preprint) (Other academic)
Abstract [en]

To maintain efficient scheduling for dynamic spectrum access problems, it is crucial to promptly detect changes in the statistical properties of spectrum occupancy. Compared to traditional change detection problems, this is complicated by the fact that measurements are not independent through time and can instead have Markovian dependencies. Moreover, classical change detection methods neglect the cost associated with measurements and do not consider the potential benefits of adapting the measurement schedule based on the observed state and the perceived likelihood of a change. This may result in high measurement overhead. In this paper, we study measurement-efficient change detection in Markovian models and demonstrate its applicability for spectrum access problems. In particular, we study problems with two states corresponding to spectrum occupancy, so called on-off models, and show important properties of these problems. For these problems, we establish fundamental limits that are imposed when the detection agent must maintain a sufficiently small false alarm rate. We also propose two classes of algorithms designed to adapt to different aspects of the problem. We analyze the behavior of these algorithms and evaluate them, using both synthetic data as well as real Wi-Fi spectrum data. 

Keywords
Change point detection, sequential analysis, non-i.i.d. data, measurements, cognitive radio, dynamic spectrum access
National Category
Communication Systems
Research subject
Information and Communication Technology; Applied and Computational Mathematics, Optimization and Systems Theory
Identifiers
urn:nbn:se:kth:diva-360483 (URN)
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20250226

Available from: 2025-02-26 Created: 2025-02-26 Last updated: 2025-03-03Bibliographically approved
6. Change Point Detection with Adaptive Measurement Schedules in Continuous-time Markov Chains
Open this publication in new window or tab >>Change Point Detection with Adaptive Measurement Schedules in Continuous-time Markov Chains
(English)Manuscript (preprint) (Other academic)
Abstract [en]

While quickest change detection is a well-known problem within sequential analysis, only recently has advances been made in optimizing the pre-change measurement budget while maintaining low detection delay and high average run time to false alarm. Furthermore, all classical models rely on measurements being independent and identically distributed, which allows them to measure very frequently in short burst in order to reduce overall frequency. This assumption is not only unrealistic for some systems, but the high measurement frequency of classical methods cause the assumption to break down. In this paper, we extend the framework of measurement-efficient quickest change detection to the case where measurements are generated by finite-state, continuous time Markov chains pre- and post-change. Imposing the additional restriction that transitions are calculable for arbitrary measurement times, we show that this imposes important fundamental limits on detection delay and post-change measurement volume regardless of frequency. We also propose two heuristic measurement policies for this problem and analyze them, comparing them to fixed measurement intervals. Finally, we propose M/M/1 queues as an important special case for this problem and show the analyzed properties on this special example through simulation.

Keywords
Change point detection, sequential analysis, Markov chains, measurements
National Category
Probability Theory and Statistics
Research subject
Electrical Engineering; Applied and Computational Mathematics, Optimization and Systems Theory
Identifiers
urn:nbn:se:kth:diva-360479 (URN)
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Available from: 2025-02-26 Created: 2025-02-26 Last updated: 2025-03-03Bibliographically approved

Open Access in DiVA

summary(18961 kB)3927 downloads
File information
File name SUMMARY01.pdfFile size 18961 kBChecksum SHA-512
72008cafdd05855c6d10236a9bf34ba744439fdda46dcb8ecefcc43dc098752912a3eeacdc76970e12de2f8b9fa185857b0b610889deaca7326b983e9c6b2775
Type summaryMimetype application/pdf

Authority records

Lindståhl, Simon

Search in DiVA

By author/editor
Lindståhl, Simon
By organisation
Decision and Control Systems (Automatic Control)
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1111 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf