kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A spine-integrated thoracoscapular shoulder (SITS) model for the analysis of shoulder biomechanics across sitting postures
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Aerospace, moveability and naval architecture. (KTH MoveAbility)ORCID iD: 0009-0007-4276-506X
The Swedish School of Sport and Health Sciences, Stockholm, Sweden; Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden.ORCID iD: 0000-0001-5317-2779
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Aerospace, moveability and naval architecture. Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden. (KTH MoveAbility)ORCID iD: 0000-0001-5417-5939
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Comprehensive analysis of postural influences on shoulder biomechanics, more specifically internal forces, remains unexplored. Musculoskeletal simulations can estimate quantities that are difficult to measure experimentally, including individual muscle forces and joint contact forces. The state-of-the-art thoracoscapular musculoskeletal model has been integrated with an accurate model of spinal articulation validated against standard measurements. The spine in the model, however, cannot articulate at all. Numerous muscles around the shoulder attach to the spine and/or ribcage, thus their estimated activations and forces depend in part on accurate representation of upper body posture and vertebral joints. In this study, we introduced a spine-integrated thoracoscapular shoulder (SITS) model that included kinematic models of the lumbar and cervical spines. We modified the thoracoscapular shoulder model with articulating joints in lumbar and cervical vertebrae, and analyzed how model estimates were influenced by allowing spinal articulation. The SITS model was then used to investigate influences of sitting postures: slouched and upright on shoulder biomechanics. Motion capture experiments were performed on 6 able-bodied participants, equipped with markers and electromyography sensors on the shoulder and upper body, and the model was run for each trial, with and without spine joints. Participants performed dumbbell raise tasks in 3 directions: posterior, anterior, and lateral holding 2 kg dumbbells. The model with spine joints reproduced the sitting posture more realistically, and estimated significant differences in joint kinematics, muscle moment arms, muscle activations and joint contact forces. These differences were most significant in posterior raise, predicting lower glenohumeral joint contact force magnitude. Results also showed that sitting postures influenced muscle activation and joint loading; compared to an upright posture, the dumbbell lateral and anterior lifting in a slouched posture involved greater glenohumeral joint movement, increased ligament lengthening, more muscle activation, and higher joint contact forces. These observations suggest that performing dumbbell lifts in a slouched posture places more load on the glenohumeral joint and increases strain on soft tissues, specifically glenohumeral ligaments. These findings support the proposed enhanced shoulder model as a benchmark for comprehensive shoulder biomechanical analysis.

Keywords [en]
Biomechanical Shoulder Models, Shoulder Loading, Postural Analysis, Shoulder Pain
National Category
Mechanical Engineering Medical Modelling and Simulation
Research subject
Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-361506OAI: oai:DiVA.org:kth-361506DiVA, id: diva2:1946150
Note

QC 20250321

Available from: 2025-03-20 Created: 2025-03-20 Last updated: 2025-04-02Bibliographically approved
In thesis
1. Modeling of Shoulder Loading and Stability
Open this publication in new window or tab >>Modeling of Shoulder Loading and Stability
2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Alternative title[sv]
Biomekaniska modeller av belastning och stabilitet i axeln
Abstract [en]

Analysis of shoulder loading can shed light on injury mechanisms, but direct measurement of loading remains challenging. Musculoskeletal simulations offer alternative estimation methods, provided they are validated. A recent open-source thoracoscapular shoulder model can reproduce scapulothoracic kinematics accurately, but its validity in estimating joint loading has been unknown. Previous attempts to use this model with  muscle redundancy solvers to estimate shoulder joint loading have been made, but whether the solutions fulfilled conditions for glenohumeral stability has been relatively little explored. The existing thoracoscapular model, moreover, does not allow any articulation in the spine, whereas muscles that span the shoulder are influenced by spinal movement.

The first aim of the thesis was to explore what degree of glenohumeral stability is adequate in a musculoskeletal model to accurately estimate shoulder joint forces. We used available kinematics and in vivo glenohumeral joint contact forces from the Orthoload dataset to evaluate the criterion validity of the proposed stability formulations. Different formulations for shoulder joint stability were introduced based on the computed direction of the joint contact force. This force was constrained to be directed into or close to the glenoid cavity, described with different geometric shapes or penalties in the muscle redundancy solver. We found that restricting the force direction towards a specified shape resulted in unrealistic force vectors that were directed along the shape borders. A less strict approach that encouraged joint contact forces to be directed centrally in the glenoid cavity estimated relatively more accurate force magnitudes and contact force directions, though some differences with the in vivo measurements still exist. 

The second aim of the thesis was to validate the use of a spine-integrated thoracoscapular shoulder (SITS) model, which includes cervical and lumbar spine articulation, to estimate shoulder biomechanics in seated activities. Specifically, aims of the second study were to evaluate the model's content validity, then to study how sitting posture can affect shoulder muscle activation and joint loading. We estimated shoulder loading during captured movements of subjects performing simple dumbbell lifting tasks in two different sitting postures—slouched and upright. We compared estimated muscle and joint loading with the rigid (locked) spine and with vertebral articulation (unlocked), and found that the customized model with an unlocked spine reproduced the actual movement more accurately. We then found that sitting postures influenced muscle activation and joint loading; compared to an upright posture, the dumbbell lateral and anterior lifting in a slouched posture involved greater glenohumeral joint movement, increased ligament lengthening, more muscle activation, and higher joint contact forces. These findings suggest that performing dumbbell lifts in a slouched posture places more load on the glenohumeral joint and increases strain on soft tissues, specifically glenohumeral ligaments.

These findings support the proposed enhanced shoulder model and stability formulations as benchmark methods for comprehensive shoulder biomechanical analysis. 

Abstract [sv]

Analys av axelbelastning kan ge insikt i skadeorsaker. Direkt mätning av belastning är dock fortfarande en utmaning. Som ett alternativ kan muskel- och ledbelastningar uppskattas med muskuloskeletala simuleringar, men modellerna måste valideras. Modeller har utvecklats för att uppskatta rörelse och belastning i axelns olika leder och muskler. Validitet vid skattning av belastning har dock inte rapporterats. Tidigare modeller tillåter inte heller rörelse i ryggraden, trots att hållningen påverkar muskler som spänner över axeln. Det första syftet med avhandlingen var att undersöka vilken grad av stabilitet runt axelleden som är tillräcklig i en muskuloskeletal modell för att uppskatta axelledens krafter. Utifrån tillgängliga in vivo-data gällande rörelse-och ledbelastning modellerades axelledens stabilitet på olika sätt genom att begränsa ledkontaktkraften så att den riktas in i eller nära glenoidkaviteten. Vi fann att en mindre strikt stabilitetsbeskrivning som uppmuntrade axelledskontaktkrafter att riktas centralt i glenoidkaviteten uppskattade kraftstorlekar och kontaktkraftriktningar relativt väl, även om vissa avvikelser med in vivo-mätningarna fortfarande fanns.

Det andra syftet med avhandlingen var att validera en biomekanisk modell av axelleden med rörelse i ryggraden (SITS), för att uppskatta axelledens biomekanik vid sittande aktiviteter. Axelbelastningen beräknades  från insamlad rörelsedata av forskningspersoner som utförde enkla hantellyftaktiviteter, i både hopsjunkna och upprätta sittställningar. Vi fann att sittställningar påverkade modellernas estimerade  muskelaktivering och ledbelastning. Jämfört med en upprätt hållning innebar hantellyftet i ett hopsjunken hållning större glenohumerala ledrörelser, mer ligamentsträckning, mer muskelaktivering samt högre ledkontaktkrafter. 

Dessa resultat stöder den föreslagna modellen av axelleden och beskrivning av ledstabilitet som benchmarkmetoder för omfattande biomekanisk analys av axelleden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 57
Series
TRITA-SCI-FOU ; 2025:04
National Category
Mechanical Engineering Medical Modelling and Simulation
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-361507 (URN)978-91-8106-187-1 (ISBN)
Presentation
2025-04-10, U1, Brinellvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Promobilia foundationSwedish Research Council
Note

QC 250320

Available from: 2025-03-20 Created: 2025-03-20 Last updated: 2025-04-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Hasan, Ibrahim Mohammed I.Gutierrez-Farewik, Elena

Search in DiVA

By author/editor
Hasan, Ibrahim Mohammed I.Lund Ohlsson, MarieGutierrez-Farewik, Elena
By organisation
Aerospace, moveability and naval architecture
Mechanical EngineeringMedical Modelling and Simulation

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf