kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Decoding in-plane orientation in cellulose nanopapers hybridized with tailored polymeric nanoparticles
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. (FibRe Ctr Lignocellulose based Thermoplast, Sch Engn)ORCID iD: 0000-0002-4639-4864
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. (FibRe Ctr Lignocellulose based Thermoplast, Sch Engn)ORCID iD: 0000-0002-1195-1405
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0002-3554-7781
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0009-0001-3837-2550
Show others and affiliations
2025 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 17, no 14, p. 8712-8723Article in journal (Refereed) Epub ahead of print
Abstract [en]

Biobased cellulose nanofibrils (CNFs) constitute important building blocks for biomimetic, nanostructured materials, and considerable potential exists in their hybridization with tailorable polymeric nanoparticles. CNFs naturally assemble into oriented, fibrillar structures in their cross-section. This work shows that polymeric nanoparticle additives have the potential to increase or decrease orientation of these cellulose structures, which allows the control of bulk mechanical properties. Small amounts of these additives (<1 wt%) are shown to promote the alignment of CNFs, and the particle size is found to determine a tailorable maximum feature size which can be modified. Herein, X-ray scattering allows for the quantification of orientation at different length scales. This newly developed method of measuring cross-sectional orientation allows for understanding the influence of nanoparticle characteristics on the CNF network structure at different length scales in hybrid cellulose-nanoparticle materials, where previously quantitative description has been lacking. It thus constitutes an important foundation for further development and understanding of nanocellulose materials on the level of their nanoscale building blocks and their interactions, which in turn are decisive for their macroscopic properties.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC) , 2025. Vol. 17, no 14, p. 8712-8723
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-361628DOI: 10.1039/d4nr04381bISI: 001444772800001PubMedID: 40070204Scopus ID: 2-s2.0-105002162860OAI: oai:DiVA.org:kth-361628DiVA, id: diva2:1946957
Note

QC 20250324

Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-05-07Bibliographically approved
In thesis
1. Assembly of Colloidal Nanoparticles and Cellulose Nanofibrils: Nanoscopic Structures Control Bulk Properties
Open this publication in new window or tab >>Assembly of Colloidal Nanoparticles and Cellulose Nanofibrils: Nanoscopic Structures Control Bulk Properties
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The need for sustainable, high-performance materials is growing rapidly as society moves away from fossil-based resources. This thesis explores how materials derived from renewable sources—cellulose nanofibrils (CNFs) extracted from wood—can be combined with synthetic polymer nanoparticles to create functional, sustainable materials with tunable properties.

Polymeric nanoparticles were synthesized using polymerization-induced self-assembly (PISA), which allows precise control over particle features such as size and surface chemistry. The nanoparticles were combined with CNFs to create hybrid materials. The thesis investigates how the size, charge, and amount of nanoparticles influence the structure, mechanical behavior, and deformation mechanisms of CNF-based materials.

Advanced characterization techniques such as small- and wide-angle X-ray scattering were used to understand how nanoparticles impact material structures to gain new insights into structure-property relationships and deformation mechanisms. The results show that by carefully tuning the interactions between components, it is possible to design new bio-based materials with tailored mechanical properties.

This work contributes to the broader effort of developing environmentally friendly alternatives to conventional plastics and composites, offering insights into how nanostructure and surface chemistry can be used to control material performance. 

Abstract [sv]

Behovet av hållbara, högpresterande material växer snabbt i takt med att samhället rör sig bort ifrån fossilbaserade resurser. Denna avhandling undersöker hur material från förnybara källor - cellulosa nanofibriller (CNF) extraherade från trä - kan kombineras med syntetiska polymera nanopartiklar för att skapa funktionella, hållbara material med skräddarsydda egenskaper.

Polymera nanopartiklar syntetiserades med ’polymerization-induced self-assembly’ (PISA); en metod som möjliggör kontroll över partikelegenskaper som storlek och ytkemi. Nanopartiklarna kombinerades med CNF för att skapa hybridmaterial. Avhandlingen undersöker hur storleken, laddningen och mängden av nanopartiklar påverkar strukturen, det mekaniska beteendet och deformationsmekanismerna hos CNF-baserade material.

Avancerade tekniker som röntgenspridning användes för att förstå hur nanopartiklar påverkar materialstrukturer för att få nya insikter om struktur-egenskapsförhållanden och deformationsmekanismer. Resultaten visar att det är möjligt att, genom skräddarsydda interaktioner mellan komponenter, designa nya biobaserade material med skräddarsydda mekaniska egenskaper.

Denna avhandling bidrar till det bredare arbetet med att utveckla miljövänliga alternativ till konventionella plaster och kompositer, vilket ger insikter i hur nanostruktur och ytkemi kan användas för att styra materialprestanda.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 99
Series
TRITA-CBH-FOU ; 2025:13
Keywords
Cellulose nanofibrils, polymeric nanoparticles, nanostructured materials, Cellulosa nanofibriller, polymera nanopartiklar, nanostrukturerade material
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-363072 (URN)978-91-8106-276-2 (ISBN)
Public defence
2025-06-05, F3, Lindstedtvägen 26, https://kth-se.zoom.us/j/61374576965, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250512

Embargo till 2026-06-05 godkänt av skolchef Amelie Eriksson Karlström via e-post 2025-05-09

Available from: 2025-05-12 Created: 2025-05-07 Last updated: 2025-05-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Jerlhagen, ÅsaGordeyeva, KorneliyaCattaruzza, MartinaBrandt, LouiseRoth, Stephan V.Wågberg, LarsMalmström, Eva

Search in DiVA

By author/editor
Jerlhagen, ÅsaGordeyeva, KorneliyaCattaruzza, MartinaBrandt, LouiseKoyiloth Vayalil, SarathlalRoth, Stephan V.Wågberg, LarsMalmström, Eva
By organisation
Coating TechnologyFiberprocesserWallenberg Wood Science CenterFibre Technology
In the same journal
Nanoscale
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf