This paper studies community detection for a nonlinear opinion dynamics model from its equilibria. It is assumed that the underlying network is generated from a stochastic block model with two communities, where agents are assigned with community labels and edges are added independently based on these labels. Agents update their opinions following a nonlinear rule that incorporates saturation effects on interactions. It is shown that clustering based on a single equilibrium can detect most community labels (i.e., achieving almost exact recovery), if the two communities differ in size and link probabilities. When the two communities are identical in size and link probabilities, and the intercommunity connections are denser than intra-community ones, the algorithm can achieve almost exact recovery under negative influence weights but fails under positive influence weights. Utilizing fixed point equations and spectral methods, we also propose a detection algorithm based on multiple equilibria, which can detect communities with positive influence weights. Numerical experiments demonstrate the performance of the proposed algorithms.
Part of ISBN 9798350316339
QC 20250401