Anomalous Hall Effect due to Magnetic Fluctuations in a Ferromagnetic Weyl SemimetalPhysik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, Winterthurerstrasse 190.
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, Winterthurerstrasse 190; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, Shatin.
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, Winterthurerstrasse 190.
Diamond Light Source, Didcot OX11 0DE, United Kingdom.
Diamond Light Source, Didcot OX11 0DE, United Kingdom.
Diamond Light Source, Didcot OX11 0DE, United Kingdom.
Paul Scherrer Institute, Laboratory for Muon Spin Spectroscopy, CH-5232 PSI Villigen, Switzerland.
Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Laboratory for Neutron Scattering and Imaging (LNS), PSI Center for Neutron and Muon Sciences, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland, Forschungsstrasse 111; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
Laboratory for Neutron Scattering and Imaging (LNS), PSI Center for Neutron and Muon Sciences, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland, Forschungsstrasse 111.
Laboratory for Multiscale Materials Experiments, PSI Center for Neutron and Muon Sciences, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland, Forschungsstrasse 111; Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany, Heisenbergstraße 1.
Laboratory for Multiscale Materials Experiments, PSI Center for Neutron and Muon Sciences, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland, Forschungsstrasse 111.
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, Winterthurerstrasse 190.
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, Winterthurerstrasse 190.
Show others and affiliations
2025 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 134, no 12, article id 126602Article in journal (Refereed) Published
Abstract [en]
The anomalous Hall effect (AHE) has emerged as a key indicator of time-reversal symmetry breaking (TRSB) and topological features in electronic band structures. Absent of a magnetic field, the AHE requires spontaneous TRSB but has proven hard to probe due to averaging over domains. The anomalous component of the Hall effect is thus frequently derived from extrapolating the magnetic field dependence of the Hall response. We show that discerning whether the AHE is an intrinsic property of the field-free system becomes intricate in the presence of strong magnetic fluctuations. As a study case, we use the Weyl semimetal PrAlGe, where TRSB can be toggled via a ferromagnetic transition, providing a transparent view of the AHE's topological origin. Through a combination of thermodynamic, transport, and muon spin relaxation measurements, we contrast the behavior below the ferromagnetic transition temperature to that of strong magnetic fluctuations above. Our results on PrAlGe provide general insights into the interpretation of anomalous Hall signals in systems where TRSB is debated, such as families of kagome metals or certain transition metal dichalcogenides.
Place, publisher, year, edition, pages
American Physical Society (APS) , 2025. Vol. 134, no 12, article id 126602
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-362258DOI: 10.1103/PhysRevLett.134.126602ISI: 001458956800001PubMedID: 40215520Scopus ID: 2-s2.0-105001293334OAI: oai:DiVA.org:kth-362258DiVA, id: diva2:1951052
Note
QC 20250415
2025-04-092025-04-092025-04-15Bibliographically approved