kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cell-Free Massive MIMO Networks: Practical Aspects and Transmission Techniques for Radio Resource Optimization
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.ORCID iD: 0000-0002-6260-7241
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing demand for wireless data traffic poses a significant challenge for current cellular networks, requiring each new technology generation to enhance network capacity and coverage, and spectral efficiency (SE) per connected device. Massive multiple-input multiple-output (MIMO) technology has emerged as a key component of 5G and leverages a large number of antennas at each access point (AP) to spatially multiplex many user equipments (UEs) over the same time-frequency resources. Looking beyond 5G, the new cell-free massive MIMO technology has gained considerable attention due to its ability to exploit spatial macro diversity and achieve higher interference resilience. Unlike traditional cellular networks, the cell-free architecture consists of a dense deployment of distributed APs that collaboratively serve UEs across a large coverage area without predefined cell boundaries. This architecture improves the mobile network coverage and aims to provide a more uniform quality of service throughout the network. However, the primary challenges of cell-free massive MIMO include the high computational complexity required for signal processing and the substantial fronthaul capacity needed for information exchange between APs. Moreover, another major challenge is handover management to cope with changing channel conditions and UE mobility; since in a cell-free network handover needs to consider how to dynamically evolve the serving set of APs to each UE, which is more complicated than in a cellular network where each UE is served by a single AP and handover means changing the serving AP.

In this doctoral thesis, we provide distributed solutions to research problems related to power allocation and mobility management to address some of the inherent challenges of the cell-free network architecture. Additionally, we introduce a new method for characterizing unknown interference in wireless networks. Moreover, we propose efficient optimization procedures in the context of multicast beamforming optimization and establish a novel method for rank reduction in conjunction with semidefinite relaxation (SDR).

For the problem related to power allocation, a distributed machine learning-based solution that provides a good trade-off between SE performance and applicability for implementation in large-scale networks is developed with reduced fronthaul requirements and computational complexity as compared to a centralized solution, where the power allocation for all APs is computed at a central processor. The solution is divided in a way that enables each AP, or group of APs, to separately decide on the power coefficients to the UEs based on the locally available information at the AP without exchanging information with the other APs, however, still attempting to achieve a network wide optimization objective. 

Regarding mobility management, a new soft handover procedure is devised for updating the serving sets of APs and assigning pilot signals to each UE in a dynamic scenario considering UE mobility. The algorithm is tailored to reduce the required number of handovers per UE and changes in pilot assignment. Numerical results show that our proposed solution identifies the essential refinements since it can deliver comparable SE to the case when the AP-UE association is completely redone.

As for interference modeling, we developed a new Bayesian-based technique to model the distribution of the unknown interference arising from scheduling variations in neighbouring cells. The method is shown to provide accurate statistical modeling of the unknown interference power and an effective tool for robust rate allocation in the uplink with a guaranteed target outage performance. The method was later extended to account for the unknown interference of neighbouring clusters in a cell-free network architecture.

Many wireless communication applications require sending the same data to multiple UEs; for example, in streaming live events, distributing software updates, or training of federated learning models. Physical-layer multicasting presents an efficient transmission topology to exploit the beamforming capabilities at the transmitting nodes and broadcast nature of the wireless channel to satisfy the demand for the same content from several UEs. The uniform service quality and improved coverage of the cell-free network architecture are particularly suitable for this transmission topology. In this regard, we propose a novel successive elimination algorithm coupled with SDR to extract a near-global optimal rank-1 beamforming solution to the max-min fairness (MMF) multicast problem in a cell-free massive MIMO network. A specifically tailored optimization algorithm is then designed, leveraging the alternating direction method of multipliers (ADMM) and offering significant improvements in computational requirements.

Abstract [sv]

Den ökande efterfrågan på trådlös datatrafik utgör en betydande utmaning för dagens cellulära nätverk, vilket kräver att varje ny teknikgeneration förbättrar nätverkskapacitet och täckningen, samt spektraleffektivitet (SE) per uppkopplad enhet. Massiv MIMO-teknik (multiple-input multiple-output) har dykt upp som en viktig komponent i 5G då den använder ett stort antal antenner på varje accesspunkt (AP) för att rumsligt multiplexa många användarutrustningar (UE) över samma tidsfrekvensresurser. Om man ser bortom 5G så har den nya cellfria massiva MIMO-tekniken fått stor uppmärksamhet på grund av sin förmåga att utnyttja rumslig makrodiversitet och uppnå högre interferensmotståndskraft. Till skillnad från traditionella cellulära nätverk består den cellfria arkitekturen av en tät uppsättning av distribuerade AP:er som samarbetar för att betjäna UE:er över ett stort täckningsområde utan fördefinierade cellgränser. Denna arkitektur förbättrar mobilnätets täckning och syftar till att ge en mer enhetlig tjänstekvalitet i hela nätverket. De primära utmaningarna med cellfri massiv MIMO inkluderar den höga beräkningskomplexiteten som krävs för signalbehandling och den betydande fronthaul-kapacitet som behövs för informationsutbyte mellan AP:er. En annan stor utmaning är dessutom överräcknings-hantering för att klara av ändrade kanalförhållanden och UE-mobilitet; eftersom överräckning i ett cellfritt nätverk måste överväga hur man dynamiskt förändrar den betjänande uppsättningen av AP:er till varje UE, vilket är mer komplicerat än i ett cellulärt nätverk där varje UE betjänas av en enda AP och överräckning endast innebär att byta ansvarig AP.

I den här doktorsavhandlingen presenterar vi distribuerade lösningar på forskningsproblem relaterade till effektreglering och mobilitetshantering för att hantera några av de inneboende utmaningarna med den cellfria nätverksarkitekturen. Dessutom introducerar vi en ny metod för att karakterisera okända störningar i trådlösa nätverk. Vi föreslår även effektiva optimeringsprocedurer för optimering av multicast-lobformning och etablerar en ny metod för rangreduktion i samband med semidefinit relaxering (SDR).

För problemen kopplade till effektreglering utvecklas en distribuerad maskininlärningsbaserad lösning som ger en bra avvägning mellan SE-prestanda och tillämpbarhet för implementering i storskaliga nätverk med minskade fronthaulkrav och beräkningskomplexitet jämfört med en centraliserad lösning, där effektregleringen för alla AP:er beräknas på en central processor. Lösningen är uppdelat på ett sätt som gör det möjligt för varje AP, eller grupp av AP:er, att separat besluta om effektkoefficienterna till UE:er baserat på den lokalt tillgängliga informationen vid AP:erna utan att utbyta information med de övriga AP:erna, men ändå försöka uppnå ett nätverksomfattande optimeringsmål. 

När det gäller mobilitetshantering utformas en ny överräcknings-procedur för uppdatering av de betjänande uppsättningarna av AP:er och tilldelas pilotsignaler till varje UE i ett dynamiskt scenario med hänsyn till UE-mobilitet. Algoritmen är skräddarsydd för att minska det nödvändiga antalet överräckningar per UE och förändringar i pilottilldelningen. Våra numeriska resultat visar att den föreslagna lösningen identifierar de väsentliga förfiningarna eftersom den kan leverera jämförbar SE som i fallet där AP-UE-associationen görs om helt.

När det gäller störningsmodellering utvecklade vi en ny Bayesiansk metod för att modellera fördelningen av de okända störningar som uppstår på grund av schemaläggningsvariationer i närliggande celler. Metoden har visat sig ge korrekt statistisk modellering av störningseffekten och är ett effektivt verktyg för robust hastighetsallokering i upplänken med en garanterad avbrottsprestanda. Metoden utökades senare för att ta hänsyn till de okända störningarna från angränsande kluster i en cellfri nätverksarkitektur.

Många trådlösa kommunikationstillämpningar kräver att samma data skickas till flera UE:er, till exempel vid streaming av liveevenemang, distribution av programuppdateringar eller träning av federerade inlärningsmodeller. Multicasting på det fysiska lagret är en effektiv överföringsmetod som utnyttjar lobformningsförmågan vid AP:erna och spridningsförmågan hos den trådlösa kanalen för att tillfredsställa efterfrågan på samma innehåll från flera UE:er. Den enhetliga servicekvaliteten och förbättrade täckningen hos den cellfria nätverksarkitekturen är särskilt lämplig för denna överföringstopologi. I detta fall föreslår vi en ny gradvis elimineringsalgoritm kopplad till SDR för att extrahera en nästan globalt optimal rang-1-lobformningslösning för multicastproblemet med max-min-rättvisa i ett cellfritt massivt MIMO-nätverk. En skräddarsydd optimeringsalgoritm designas sedan för att utnyttja en metod som kallas alternating direction method of multipliers (ADMM) och erbjuder betydande förbättringar av beräkningsbehov.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. xv, 77
Series
TRITA-EECS-AVL ; 2025:43
Keywords [en]
Cell-free massive MIMO, power allocation, sum-SE maximization, proportional fairness, spectral efficiency, machine learning, handover, cluster formation, pilot signal assignment, unknown interference, outage, multi-user MIMO, semidefinite relaxation, rank reduction, physical-layer multicasting, downlink beamforming, ADMM.
Keywords [sv]
Cellfri massiv MIMO, effektreglering, summa-SE-maximering, proportionell rättvisa, spektraleffektivitet, maskininlärning, överräckning, klusterbildning, pilotsignalstilldelning, okända störningar, avbrottsnivå, MIMO för flera användare, semidefinit relaxering, rangreduktion, multicasting på fysiska lagret, nedlänkslobforming, ADMM.
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-362462ISBN: 978-91-8106-250-2 (print)OAI: oai:DiVA.org:kth-362462DiVA, id: diva2:1952410
Public defence
2025-05-16, https://kth-se.zoom.us/j/66273771970, Ka-Sal C, Electrum, Kistagången 16, 164 40 Kista, Stockholm, 09:15 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, 3997
Note

QC 20250416

Available from: 2025-04-16 Created: 2025-04-15 Last updated: 2025-04-22Bibliographically approved
List of papers
1. Learning-Based Downlink Power Allocation in Cell-Free Massive MIMO Systems
Open this publication in new window or tab >>Learning-Based Downlink Power Allocation in Cell-Free Massive MIMO Systems
2023 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 22, no 1, p. 174-188Article in journal (Refereed) Published
Abstract [en]

This paper considers a cell-free massive multiple-input multiple-output (MIMO) system that consists of a large number of geographically distributed access points (APs) serving multiple users via coherent joint transmission. The downlink performance of the system is evaluated, with maximum ratio and regularized zero-forcing precoding, under two optimization objectives for power allocation: sum spectral efficiency (SE) maximization and proportional fairness. We present iterative centralized algorithms for solving these problems. Aiming at a less computationally complex and also distributed scalable solution, we train a deep neural network (DNN) to approximate the same network-wide power allocation. Instead of training our DNN to mimic the actual optimization procedure, we use a heuristic power allocation, based on large-scale fading (LSF) parameters, as the pre-processed input to the DNN. We train the DNN to refine the heuristic scheme, thereby providing higher SE, using only local information at each AP. Another distributed DNN that exploits side information assumed to be available at the central processing unit is designed for improved performance. Further, we develop a clustered DNN model where the LSF parameters of a small number of APs, forming a cluster within a relatively large network, are used to jointly approximate the power coefficients of the cluster.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Cell-free massive MIMO, power allocation, sum-SE maximization, proportional fairness, deep learning, spectral efficiency, downlink
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-324707 (URN)10.1109/TWC.2022.3192203 (DOI)000925620400012 ()2-s2.0-85135748426 (Scopus ID)
Note

QC 20230509

Available from: 2023-03-15 Created: 2023-03-15 Last updated: 2025-04-15Bibliographically approved
2. Soft Handover Procedures in mmWave Cell-Free Massive MIMO Networks
Open this publication in new window or tab >>Soft Handover Procedures in mmWave Cell-Free Massive MIMO Networks
2024 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 23, no 6, p. 6124-6138Article in journal (Refereed) Published
Abstract [en]

This paper considers a mmWave cell-free massive MIMO (multiple-input multiple-output) network composed of a large number of geographically distributed access points (APs) simultaneously serving multiple user equipments (UEs) via coherent joint transmission. We address UE mobility in the downlink (DL) with imperfect channel state information (CSI) and pilot training. Aiming at extending traditional handover concepts to the challenging AP-UE association strategies of cell-free networks, distributed algorithms for joint pilot assignment and cluster formation are proposed in a dynamic environment considering UE mobility. The algorithms provide a systematic procedure for initial access and update of the serving APs and assigned pilot sequence to each UE. The principal goal is to limit the necessary number of AP and pilot changes, while limiting computational complexity. We evaluate the performance, in terms of spectral efficiency (SE), with maximum ratio and regularized zero-forcing precoding. Results show that our proposed distributed algorithms effectively identify the essential AP-UE association refinements with orders-of-magnitude lower computational time compared to the state-of-the-art. It also provides a significantly lower average number of pilot changes compared to an ultra-dense network (UDN). Moreover, we develop an improved pilot assignment procedure that facilitates massive access to the network in highly loaded scenarios.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Cell-free massive MIMO, cluster formation, Clustering algorithms, Distributed algorithms, handover, Handover, Heuristic algorithms, Massive MIMO, Millimeter wave communication, mobility management, pilot assignment, spectral efficiency, Wireless communication
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-350292 (URN)10.1109/TWC.2023.3330199 (DOI)001247163400028 ()2-s2.0-85177080883 (Scopus ID)
Note

QC 20240711

Available from: 2024-07-11 Created: 2024-07-11 Last updated: 2025-04-15Bibliographically approved
3. A Bayesian Approach to Characterize Unknown Interference Power in Wireless Networks
Open this publication in new window or tab >>A Bayesian Approach to Characterize Unknown Interference Power in Wireless Networks
2023 (English)In: IEEE Wireless Communications Letters, ISSN 2162-2337, E-ISSN 2162-2345, Vol. 12, no 8, p. 1374-1378Article in journal (Refereed) Published
Abstract [en]

The existence of unknown interference is a prevalent problem in wireless communication networks. Especially in multi-user multiple-input multiple-output (MIMO) networks, where a large number of user equipments are served on the same time-frequency resources, the outage performance may be dominated by the unknown interference arising from scheduling variations in neighboring cells. In this letter, we propose a Bayesian method for modeling the unknown interference power in the uplink of a cellular network. Numerical results show that our method accurately models the distribution of the unknown interference power and can be effectively used for rate adaptation with guaranteed target outage performance.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Index Terms-Outage probability, MU-MIMO, unknown interference, multiple access, spectral efficiency, uplink (UL)
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-335139 (URN)10.1109/LWC.2023.3275174 (DOI)001045291900016 ()2-s2.0-85159793647 (Scopus ID)
Note

QC 20230901

Available from: 2023-09-01 Created: 2023-09-01 Last updated: 2025-04-15Bibliographically approved
4. Unknown Interference Modeling for Rate Adaptation in Cell-Free Massive MIMO Networks
Open this publication in new window or tab >>Unknown Interference Modeling for Rate Adaptation in Cell-Free Massive MIMO Networks
2024 (English)In: 2024 IEEE Wireless Communications and Networking Conference, WCNC 2024 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE) , 2024Conference paper, Published paper (Refereed)
Abstract [en]

Co-channel interference poses a challenge in any wireless communication network where the time-frequency resources are reused over different geographical areas. The interference is particularly diverse in cell-free massive multiple-input multiple-output (MIMO) networks, where a large number of user equipments (UEs) are multiplexed by a multitude of access points (APs) on the same time-frequency resources. For realistic and scalable network operation, only the interference from UEs belonging to the same serving cluster of APs can be estimated in real-time and suppressed by precoding/combining. As a result, the unknown interference arising from scheduling variations in neighboring clusters makes the rate adaptation hard and can lead to outages. This paper aims to model the unknown interference power in the uplink of a cell-free massive MIMO network. The results show that the proposed method effectively describes the distribution of the unknown interference power and provides a tool for rate adaptation with guaranteed target outage.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
cell-free massive MIMO, Outage probability, spectral efficiency, unknown interference, uplink
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-350993 (URN)10.1109/WCNC57260.2024.10570598 (DOI)001268569300095 ()2-s2.0-85198828692 (Scopus ID)
Conference
25th IEEE Wireless Communications and Networking Conference, WCNC 2024, Dubai, United Arab Emirates, Apr 21 2024 - Apr 24 2024
Note

Part of ISBN 9798350303582

QC 20240725

Available from: 2024-07-24 Created: 2024-07-24 Last updated: 2025-04-15Bibliographically approved
5. Cell-Free Beamforming Design for Physical Layer Multigroup Multicasting
Open this publication in new window or tab >>Cell-Free Beamforming Design for Physical Layer Multigroup Multicasting
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In many wireless communication applications, it is desirable to transmit the same data to multiple user equipments (UEs). Physical layer multicasting presents an efficient transmission topology to exploit the beamforming capabilities at the transmitting nodes and broadcast nature of the wireless channel to satisfy the demand for the same content from several UEs. An advantage of multicasting is to avoid unnecessary co-channel interference between UEs requesting the same data. The difficulty is to find the suitable beamforming configuration that guarantees an acceptable minimum data rate, among the receiving UE group, to the multicast transmission. This paper addresses the max-min fair multigroup multicast optimization problem and proposes a novel iterative elimination procedure coupled with semidefinite relaxation (SDR) to find the near-optimal rank-1 beamforming vectors in a cell-free massive MIMO (multiple-input multiple-output) network. The proposed optimization procedure significantly improves computational complexity and spectral efficiency compared to common methods that use SDR followed by some randomization procedure and the state-of-the-art difference-of-convex approximation algorithm. The importance of the proposed procedure is that it is applicable to any SDR problem where a low-rank solution is desirable. Further, we propose a low-complexity algorithm that achieves 87 % of the optimal rank-1 solution at orders-of-magnitude lower computational time.

Keywords
Multicast, downlink beamforming, convex optimization, semidefinite relaxation, cell-free massive MIMO.
National Category
Communication Systems
Research subject
Telecommunication
Identifiers
urn:nbn:se:kth:diva-361926 (URN)
Funder
Swedish Foundation for Strategic Research, 3997
Note

QC 20250409

Available from: 2025-04-02 Created: 2025-04-02 Last updated: 2025-04-15Bibliographically approved
6. Low-Complexity SDP-ADMM for Physical-Layer Multicasting in Massive MIMO Systems
Open this publication in new window or tab >>Low-Complexity SDP-ADMM for Physical-Layer Multicasting in Massive MIMO Systems
(English)Manuscript (preprint) (Other academic)
Abstract [en]

There is a demand for the same data content from several user equipments (UEs) in many wireless communication applications. Physical-layer multicasting combines the beamforming capability of massive MIMO (multiple-input multiple-output) and the broadcast nature of the wireless channel to efficiently deliver the same data to a group of UEs using a single transmission. This paper tackles the max-min fair (MMF) multicast beamforming optimization, which is an NP-hard problem. We develop an efficient semidefinite program-alternating direction method of multipliers (SDP-ADMM) algorithm to find the near-global optimal rank-1 solution to the MMF multicast problem in a massive MIMO system. Numerical results show that the proposed SDP-ADMM algorithm exhibits similar spectral efficiency performance to state-of-the-art algorithms running on standard SDP solvers at a vastly reduced computational complexity. We highlight that the proposed ADMM elimination procedure can be employed as an effective low-complexity rank reduction method for other problems utilizing semidefinite relaxation.

Keywords
Multicast, downlink beamforming, convex optimization, semidefinite relaxation, ADMM, massive MIMO.
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-361928 (URN)
Funder
Swedish Foundation for Strategic Research, 3997
Note

Accepted in 23rd International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), 2025.

QC 20250409

Available from: 2025-04-02 Created: 2025-04-02 Last updated: 2025-04-15Bibliographically approved

Open Access in DiVA

Doctoral Thesis - Zaher(4482 kB)51 downloads
File information
File name FULLTEXT01.pdfFile size 4482 kBChecksum SHA-512
5a4845d64acbc1d04451acbf26f7977454a343b9e1b7d9674905dc3c7236e9c49b818cad53492cd4f058b2d21fddb6e2a651aa752c092a145acee9dab9d59d32
Type summaryMimetype application/pdf

Authority records

Zaher, Mahmoud

Search in DiVA

By author/editor
Zaher, Mahmoud
By organisation
Communication Systems, CoS
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 599 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf